355 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			355 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2005 Matteo Frigo | ||
|  |  * Copyright (c) 2005 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an
 | ||
|  |    R{E,O}DFT00 problem and an RDFT problem of half the length. | ||
|  | 
 | ||
|  |    This works by "logically" expanding the array to a real-even/odd DFT of | ||
|  |    length 2n-/+2 and then applying the split-radix algorithm. | ||
|  | 
 | ||
|  |    In this way, we can avoid having to pad to twice the length | ||
|  |    (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, | ||
|  |    but don't incur the accuracy loss that the "ordinary" algorithm | ||
|  |    sacrifices (ala redft00-r2hc.c). | ||
|  | */ | ||
|  | 
 | ||
|  | #include "reodft/reodft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      plan *clde, *cldo; | ||
|  |      twid *td; | ||
|  |      INT is, os; | ||
|  |      INT n; | ||
|  |      INT vl; | ||
|  |      INT ivs, ovs; | ||
|  | } P; | ||
|  | 
 | ||
|  | /* redft00 */ | ||
|  | static void apply_e(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, j, n = ego->n + 1, n2 = (n-1)/2; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W - 2; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  /* do size (n-1)/2 r2hc transform of odd-indexed elements
 | ||
|  | 	     with stride 4, "wrapping around" end of array with even | ||
|  | 	     boundary conditions */ | ||
|  | 	  for (j = 0, i = 1; i < n; i += 4) | ||
|  | 	       buf[j++] = I[is * i]; | ||
|  | 	  for (i = 2*n-2-i; i > 0; i -= 4) | ||
|  | 	       buf[j++] = I[is * i]; | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cldo; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  /* do size (n+1)/2 redft00 of the even-indexed elements,
 | ||
|  | 	     writing to O: */ | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->clde; | ||
|  | 	       cld->apply((plan *) cld, I, O); | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  /* combine the results with the twiddle factors to get output */ | ||
|  | 	  { /* DC element */ | ||
|  | 	       E b20 = O[0], b0 = K(2.0) * buf[0]; | ||
|  | 	       O[0] = b20 + b0; | ||
|  | 	       O[2*(n2*os)] = b20 - b0; | ||
|  | 	       /* O[n2*os] = O[n2*os]; */ | ||
|  | 	  } | ||
|  | 	  for (i = 1; i < n2 - i; ++i) { | ||
|  | 	       E ap, am, br, bi, wr, wi, wbr, wbi; | ||
|  | 	       br = buf[i]; | ||
|  | 	       bi = buf[n2 - i]; | ||
|  | 	       wr = W[2*i]; | ||
|  | 	       wi = W[2*i+1]; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	       wbr = K(2.0) * (wr*br + wi*bi); | ||
|  | 	       wbi = K(2.0) * (wr*bi - wi*br); | ||
|  | #else
 | ||
|  | 	       wbr = K(2.0) * (wr*br - wi*bi); | ||
|  | 	       wbi = K(2.0) * (wr*bi + wi*br); | ||
|  | #endif
 | ||
|  | 	       ap = O[i*os]; | ||
|  | 	       O[i*os] = ap + wbr; | ||
|  | 	       O[(2*n2 - i)*os] = ap - wbr; | ||
|  | 	       am = O[(n2 - i)*os]; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	       O[(n2 - i)*os] = am - wbi; | ||
|  | 	       O[(n2 + i)*os] = am + wbi; | ||
|  | #else
 | ||
|  | 	       O[(n2 - i)*os] = am + wbi; | ||
|  | 	       O[(n2 + i)*os] = am - wbi; | ||
|  | #endif
 | ||
|  | 	  } | ||
|  | 	  if (i == n2 - i) { /* Nyquist element */ | ||
|  | 	       E ap, wbr; | ||
|  | 	       wbr = K(2.0) * (W[2*i] * buf[i]); | ||
|  | 	       ap = O[i*os]; | ||
|  | 	       O[i*os] = ap + wbr; | ||
|  | 	       O[(2*n2 - i)*os] = ap - wbr; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | /* rodft00 */ | ||
|  | static void apply_o(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, j, n = ego->n - 1, n2 = (n+1)/2; | ||
|  |      INT iv, vl = ego->vl; | ||
|  |      INT ivs = ego->ivs, ovs = ego->ovs; | ||
|  |      R *W = ego->td->W - 2; | ||
|  |      R *buf; | ||
|  | 
 | ||
|  |      buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); | ||
|  | 
 | ||
|  |      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | ||
|  | 	  /* do size (n+1)/2 r2hc transform of even-indexed elements
 | ||
|  | 	     with stride 4, "wrapping around" end of array with odd | ||
|  | 	     boundary conditions */ | ||
|  | 	  for (j = 0, i = 0; i < n; i += 4) | ||
|  | 	       buf[j++] = I[is * i]; | ||
|  | 	  for (i = 2*n-i; i > 0; i -= 4) | ||
|  | 	       buf[j++] = -I[is * i]; | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->cldo; | ||
|  | 	       cld->apply((plan *) cld, buf, buf); | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  /* do size (n-1)/2 rodft00 of the odd-indexed elements,
 | ||
|  | 	     writing to O: */ | ||
|  | 	  { | ||
|  | 	       plan_rdft *cld = (plan_rdft *) ego->clde; | ||
|  | 	       if (I == O) { | ||
|  | 		    /* can't use I+is and I, subplan would lose in-placeness */ | ||
|  | 		    cld->apply((plan *) cld, I + is, I + is); | ||
|  | 		    /* we could maybe avoid this copy by modifying the
 | ||
|  | 		       twiddle loop, but currently I can't be bothered. */ | ||
|  | 		    A(is >= os); | ||
|  | 		    for (i = 0; i < n2-1; ++i) | ||
|  | 			 O[os*i] = I[is*(i+1)]; | ||
|  | 	       } | ||
|  | 	       else | ||
|  | 		    cld->apply((plan *) cld, I + is, O); | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  /* combine the results with the twiddle factors to get output */ | ||
|  | 	  O[(n2-1)*os] = K(2.0) * buf[0]; | ||
|  | 	  for (i = 1; i < n2 - i; ++i) { | ||
|  | 	       E ap, am, br, bi, wr, wi, wbr, wbi; | ||
|  | 	       br = buf[i]; | ||
|  | 	       bi = buf[n2 - i]; | ||
|  | 	       wr = W[2*i]; | ||
|  | 	       wi = W[2*i+1]; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	       wbr = K(2.0) * (wr*br + wi*bi); | ||
|  | 	       wbi = K(2.0) * (wi*br - wr*bi); | ||
|  | #else
 | ||
|  | 	       wbr = K(2.0) * (wr*br - wi*bi); | ||
|  | 	       wbi = K(2.0) * (wr*bi + wi*br); | ||
|  | #endif
 | ||
|  | 	       ap = O[(i-1)*os]; | ||
|  | 	       O[(i-1)*os] = wbi + ap; | ||
|  | 	       O[(2*n2-1 - i)*os] = wbi - ap; | ||
|  | 	       am = O[(n2-1 - i)*os]; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	       O[(n2-1 - i)*os] = wbr + am; | ||
|  | 	       O[(n2-1 + i)*os] = wbr - am; | ||
|  | #else
 | ||
|  | 	       O[(n2-1 - i)*os] = wbr + am; | ||
|  | 	       O[(n2-1 + i)*os] = wbr - am; | ||
|  | #endif
 | ||
|  | 	  } | ||
|  | 	  if (i == n2 - i) { /* Nyquist element */ | ||
|  | 	       E ap, wbi; | ||
|  | 	       wbi = K(2.0) * (W[2*i+1] * buf[i]); | ||
|  | 	       ap = O[(i-1)*os]; | ||
|  | 	       O[(i-1)*os] = wbi + ap; | ||
|  | 	       O[(2*n2-1 - i)*os] = wbi - ap; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      static const tw_instr reodft00e_tw[] = { | ||
|  |           { TW_COS, 1, 1 }, | ||
|  |           { TW_SIN, 1, 1 }, | ||
|  |           { TW_NEXT, 1, 0 } | ||
|  |      }; | ||
|  | 
 | ||
|  |      X(plan_awake)(ego->clde, wakefulness); | ||
|  |      X(plan_awake)(ego->cldo, wakefulness); | ||
|  |      X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw,  | ||
|  | 		      2*ego->n, 1, ego->n/4); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cldo); | ||
|  |      X(plan_destroy_internal)(ego->clde); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      if (ego->super.apply == apply_e) | ||
|  | 	  p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))",  | ||
|  | 		   ego->n + 1, ego->vl, ego->clde, ego->cldo); | ||
|  |      else | ||
|  | 	  p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))",  | ||
|  | 		   ego->n - 1, ego->vl, ego->clde, ego->cldo); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      UNUSED(ego_); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk <= 1 | ||
|  | 	     && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) | ||
|  | 	     && p->sz->dims[0].n > 1  /* don't create size-0 sub-plans */ | ||
|  | 	     && p->sz->dims[0].n % 2  /* odd: 4 divides "logical" DFT */ | ||
|  | 	     && (p->I != p->O || p->vecsz->rnk == 0 | ||
|  | 		 || p->vecsz->dims[0].is == p->vecsz->dims[0].os) | ||
|  | 	     && (p->kind[0] != RODFT00 || p->I != p->O ||  | ||
|  | 		 p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p, const planner *plnr) | ||
|  | { | ||
|  |      return (!NO_SLOWP(plnr) && applicable0(ego, p)); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      P *pln; | ||
|  |      const problem_rdft *p; | ||
|  |      plan *clde, *cldo; | ||
|  |      R *buf; | ||
|  |      INT n, n0; | ||
|  |      opcnt ops; | ||
|  |      int inplace_odd; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); | ||
|  |      A(n > 0 && n % 2 == 0); | ||
|  |      buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); | ||
|  | 
 | ||
|  |      inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; | ||
|  |      clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( | ||
|  | 			     X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is,  | ||
|  | 					    inplace_odd ? p->sz->dims[0].is | ||
|  | 					    : p->sz->dims[0].os),  | ||
|  | 			     X(mktensor_0d)(),  | ||
|  | 			     TAINT(p->I  | ||
|  | 				   + p->sz->dims[0].is * (p->kind[0]==RODFT00), | ||
|  | 				   p->vecsz->rnk ? p->vecsz->dims[0].is : 0), | ||
|  | 			     TAINT(p->O | ||
|  | 				   + p->sz->dims[0].is * inplace_odd, | ||
|  | 				   p->vecsz->rnk ? p->vecsz->dims[0].os : 0), | ||
|  | 			     p->kind[0])); | ||
|  |      if (!clde) { | ||
|  | 	  X(ifree)(buf); | ||
|  |           return (plan *)0; | ||
|  |      } | ||
|  | 
 | ||
|  |      cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( | ||
|  | 			     X(mktensor_1d)(n/2, 1, 1),  | ||
|  | 			     X(mktensor_0d)(),  | ||
|  | 			     buf, buf, R2HC)); | ||
|  |      X(ifree)(buf); | ||
|  |      if (!cldo) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); | ||
|  | 
 | ||
|  |      pln->n = n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->clde = clde; | ||
|  |      pln->cldo = cldo; | ||
|  |      pln->td = 0; | ||
|  | 
 | ||
|  |      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | ||
|  |       | ||
|  |      X(ops_zero)(&ops); | ||
|  |      ops.other = n/2; | ||
|  |      ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + | ||
|  | 	  (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; | ||
|  |      ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; | ||
|  | 
 | ||
|  |      /* tweak ops.other so that r2hc-pad is used for small sizes, which
 | ||
|  | 	seems to be a lot faster on my machine: */ | ||
|  |      ops.other += 256; | ||
|  | 
 | ||
|  |      X(ops_zero)(&pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); | ||
|  |      X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | /* constructor */ | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(reodft00e_splitradix_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |