250 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			250 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:24 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 60 FP additions, 42 FP multiplications, | ||
|  |  * (or, 18 additions, 0 multiplications, 42 fused multiply/add), | ||
|  |  * 41 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP692021471, +0.692021471630095869627814897002069140197260599); | ||
|  |      DK(KP801937735, +0.801937735804838252472204639014890102331838324); | ||
|  |      DK(KP554958132, +0.554958132087371191422194871006410481067288862); | ||
|  |      DK(KP356895867, +0.356895867892209443894399510021300583399127187); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { | ||
|  | 	       E T1, Tz, T4, TI, Ta, TG, T7, TH, Tb, Tp, TT, TO, TJ, Tu, Tg; | ||
|  | 	       E TB, Tm, TC, Tj, TA, Tn, Ts, TQ, TL, TD, Tx; | ||
|  | 	       T1 = ri[0]; | ||
|  | 	       Tz = ii[0]; | ||
|  | 	       { | ||
|  | 		    E T2, T3, Te, Tf; | ||
|  | 		    T2 = ri[WS(is, 1)]; | ||
|  | 		    T3 = ri[WS(is, 6)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    TI = T3 - T2; | ||
|  | 		    { | ||
|  | 			 E T8, T9, T5, T6; | ||
|  | 			 T8 = ri[WS(is, 3)]; | ||
|  | 			 T9 = ri[WS(is, 4)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 TG = T9 - T8; | ||
|  | 			 T5 = ri[WS(is, 2)]; | ||
|  | 			 T6 = ri[WS(is, 5)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 TH = T6 - T5; | ||
|  | 		    } | ||
|  | 		    Tb = FNMS(KP356895867, T7, T4); | ||
|  | 		    Tp = FNMS(KP356895867, T4, Ta); | ||
|  | 		    TT = FMA(KP554958132, TG, TI); | ||
|  | 		    TO = FMA(KP554958132, TH, TG); | ||
|  | 		    TJ = FNMS(KP554958132, TI, TH); | ||
|  | 		    Tu = FNMS(KP356895867, Ta, T7); | ||
|  | 		    Te = ii[WS(is, 2)]; | ||
|  | 		    Tf = ii[WS(is, 5)]; | ||
|  | 		    Tg = Te - Tf; | ||
|  | 		    TB = Te + Tf; | ||
|  | 		    { | ||
|  | 			 E Tk, Tl, Th, Ti; | ||
|  | 			 Tk = ii[WS(is, 3)]; | ||
|  | 			 Tl = ii[WS(is, 4)]; | ||
|  | 			 Tm = Tk - Tl; | ||
|  | 			 TC = Tk + Tl; | ||
|  | 			 Th = ii[WS(is, 1)]; | ||
|  | 			 Ti = ii[WS(is, 6)]; | ||
|  | 			 Tj = Th - Ti; | ||
|  | 			 TA = Th + Ti; | ||
|  | 		    } | ||
|  | 		    Tn = FMA(KP554958132, Tm, Tj); | ||
|  | 		    Ts = FMA(KP554958132, Tg, Tm); | ||
|  | 		    TQ = FNMS(KP356895867, TB, TA); | ||
|  | 		    TL = FNMS(KP356895867, TA, TC); | ||
|  | 		    TD = FNMS(KP356895867, TC, TB); | ||
|  | 		    Tx = FNMS(KP554958132, Tj, Tg); | ||
|  | 	       } | ||
|  | 	       ro[0] = T1 + T4 + T7 + Ta; | ||
|  | 	       io[0] = Tz + TA + TB + TC; | ||
|  | 	       { | ||
|  | 		    E To, Td, Tc, TU, TS, TR; | ||
|  | 		    To = FMA(KP801937735, Tn, Tg); | ||
|  | 		    Tc = FNMS(KP692021471, Tb, Ta); | ||
|  | 		    Td = FNMS(KP900968867, Tc, T1); | ||
|  | 		    ro[WS(os, 6)] = FNMS(KP974927912, To, Td); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP974927912, To, Td); | ||
|  | 		    TU = FMA(KP801937735, TT, TH); | ||
|  | 		    TR = FNMS(KP692021471, TQ, TC); | ||
|  | 		    TS = FNMS(KP900968867, TR, Tz); | ||
|  | 		    io[WS(os, 1)] = FMA(KP974927912, TU, TS); | ||
|  | 		    io[WS(os, 6)] = FNMS(KP974927912, TU, TS); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, Tr, Tq, TP, TN, TM; | ||
|  | 		    Tt = FNMS(KP801937735, Ts, Tj); | ||
|  | 		    Tq = FNMS(KP692021471, Tp, T7); | ||
|  | 		    Tr = FNMS(KP900968867, Tq, T1); | ||
|  | 		    ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr); | ||
|  | 		    ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr); | ||
|  | 		    TP = FNMS(KP801937735, TO, TI); | ||
|  | 		    TM = FNMS(KP692021471, TL, TB); | ||
|  | 		    TN = FNMS(KP900968867, TM, Tz); | ||
|  | 		    io[WS(os, 2)] = FMA(KP974927912, TP, TN); | ||
|  | 		    io[WS(os, 5)] = FNMS(KP974927912, TP, TN); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ty, Tw, Tv, TK, TF, TE; | ||
|  | 		    Ty = FNMS(KP801937735, Tx, Tm); | ||
|  | 		    Tv = FNMS(KP692021471, Tu, T4); | ||
|  | 		    Tw = FNMS(KP900968867, Tv, T1); | ||
|  | 		    ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw); | ||
|  | 		    ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw); | ||
|  | 		    TK = FNMS(KP801937735, TJ, TG); | ||
|  | 		    TE = FNMS(KP692021471, TD, TA); | ||
|  | 		    TF = FNMS(KP900968867, TE, Tz); | ||
|  | 		    io[WS(os, 3)] = FMA(KP974927912, TK, TF); | ||
|  | 		    io[WS(os, 4)] = FNMS(KP974927912, TK, TF); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 7, "n1_7", { 18, 0, 42, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 60 FP additions, 36 FP multiplications, | ||
|  |  * (or, 36 additions, 12 multiplications, 24 fused multiply/add), | ||
|  |  * 25 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP222520933, +0.222520933956314404288902564496794759466355569); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP623489801, +0.623489801858733530525004884004239810632274731); | ||
|  |      DK(KP433883739, +0.433883739117558120475768332848358754609990728); | ||
|  |      DK(KP781831482, +0.781831482468029808708444526674057750232334519); | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) { | ||
|  | 	       E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw; | ||
|  | 	       T1 = ri[0]; | ||
|  | 	       Tu = ii[0]; | ||
|  | 	       { | ||
|  | 		    E T2, T3, Tc, Td; | ||
|  | 		    T2 = ri[WS(is, 1)]; | ||
|  | 		    T3 = ri[WS(is, 6)]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    Tq = T3 - T2; | ||
|  | 		    Tc = ii[WS(is, 1)]; | ||
|  | 		    Td = ii[WS(is, 6)]; | ||
|  | 		    Te = Tc - Td; | ||
|  | 		    Tx = Tc + Td; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5, T6, Ti, Tj; | ||
|  | 		    T5 = ri[WS(is, 2)]; | ||
|  | 		    T6 = ri[WS(is, 5)]; | ||
|  | 		    T7 = T5 + T6; | ||
|  | 		    Ts = T6 - T5; | ||
|  | 		    Ti = ii[WS(is, 2)]; | ||
|  | 		    Tj = ii[WS(is, 5)]; | ||
|  | 		    Tk = Ti - Tj; | ||
|  | 		    Tv = Ti + Tj; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8, T9, Tf, Tg; | ||
|  | 		    T8 = ri[WS(is, 3)]; | ||
|  | 		    T9 = ri[WS(is, 4)]; | ||
|  | 		    Ta = T8 + T9; | ||
|  | 		    Tr = T9 - T8; | ||
|  | 		    Tf = ii[WS(is, 3)]; | ||
|  | 		    Tg = ii[WS(is, 4)]; | ||
|  | 		    Th = Tf - Tg; | ||
|  | 		    Tw = Tf + Tg; | ||
|  | 	       } | ||
|  | 	       ro[0] = T1 + T4 + T7 + Ta; | ||
|  | 	       io[0] = Tu + Tx + Tv + Tw; | ||
|  | 	       { | ||
|  | 		    E Tl, Tb, TB, TC; | ||
|  | 		    Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk); | ||
|  | 		    Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); | ||
|  | 		    ro[WS(os, 5)] = Tb - Tl; | ||
|  | 		    ro[WS(os, 2)] = Tb + Tl; | ||
|  | 		    TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts); | ||
|  | 		    TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx); | ||
|  | 		    io[WS(os, 2)] = TB + TC; | ||
|  | 		    io[WS(os, 5)] = TC - TB; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tn, Tm, Tz, TA; | ||
|  | 		    Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th); | ||
|  | 		    Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); | ||
|  | 		    ro[WS(os, 6)] = Tm - Tn; | ||
|  | 		    ro[WS(os, 1)] = Tm + Tn; | ||
|  | 		    Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr); | ||
|  | 		    TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv); | ||
|  | 		    io[WS(os, 1)] = Tz + TA; | ||
|  | 		    io[WS(os, 6)] = TA - Tz; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, To, Tt, Ty; | ||
|  | 		    Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk); | ||
|  | 		    To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); | ||
|  | 		    ro[WS(os, 4)] = To - Tp; | ||
|  | 		    ro[WS(os, 3)] = To + Tp; | ||
|  | 		    Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts); | ||
|  | 		    Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx); | ||
|  | 		    io[WS(os, 3)] = Tt + Ty; | ||
|  | 		    io[WS(os, 4)] = Ty - Tt; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 7, "n1_7", { 36, 12, 24, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_7) (planner *p) { X(kdft_register) (p, n1_7, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |