719 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			719 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:26 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 208 FP additions, 72 FP multiplications, | ||
|  |  * (or, 136 additions, 0 multiplications, 72 fused multiply/add), | ||
|  |  * 81 stack variables, 4 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { | ||
|  | 	       E T7, T2N, T3b, TD, TP, T1R, T2f, T1d, Tt, TA, TB, T2w, T2z, T2P, T35; | ||
|  | 	       E T36, T3d, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1T, T29, T2a, T2h, T1h; | ||
|  | 	       E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2O, T32, T33, T3c, TE, TF, TG, TU; | ||
|  | 	       E TZ, T10, T1D, T1I, T1S, T26, T27, T2g, T1e, T1f, T1g; | ||
|  | 	       { | ||
|  | 		    E T3, T1N, TN, T2L, T6, TO, T1Q, T2M; | ||
|  | 		    { | ||
|  | 			 E T1, T2, TL, TM; | ||
|  | 			 T1 = ri[0]; | ||
|  | 			 T2 = ri[WS(is, 10)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T1N = T1 - T2; | ||
|  | 			 TL = ii[0]; | ||
|  | 			 TM = ii[WS(is, 10)]; | ||
|  | 			 TN = TL - TM; | ||
|  | 			 T2L = TL + TM; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T1O, T1P; | ||
|  | 			 T4 = ri[WS(is, 5)]; | ||
|  | 			 T5 = ri[WS(is, 15)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 TO = T4 - T5; | ||
|  | 			 T1O = ii[WS(is, 5)]; | ||
|  | 			 T1P = ii[WS(is, 15)]; | ||
|  | 			 T1Q = T1O - T1P; | ||
|  | 			 T2M = T1O + T1P; | ||
|  | 		    } | ||
|  | 		    T7 = T3 - T6; | ||
|  | 		    T2N = T2L - T2M; | ||
|  | 		    T3b = T2L + T2M; | ||
|  | 		    TD = T3 + T6; | ||
|  | 		    TP = TN - TO; | ||
|  | 		    T1R = T1N - T1Q; | ||
|  | 		    T2f = T1N + T1Q; | ||
|  | 		    T1d = TO + TN; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; | ||
|  | 		    E T2y; | ||
|  | 		    { | ||
|  | 			 E Tn, To, T11, T12; | ||
|  | 			 Tn = ri[WS(is, 8)]; | ||
|  | 			 To = ri[WS(is, 18)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T1o = Tn - To; | ||
|  | 			 T11 = ii[WS(is, 8)]; | ||
|  | 			 T12 = ii[WS(is, 18)]; | ||
|  | 			 T13 = T11 - T12; | ||
|  | 			 T2u = T11 + T12; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T1p, T1q; | ||
|  | 			 Tq = ri[WS(is, 13)]; | ||
|  | 			 Tr = ri[WS(is, 3)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T14 = Tq - Tr; | ||
|  | 			 T1p = ii[WS(is, 13)]; | ||
|  | 			 T1q = ii[WS(is, 3)]; | ||
|  | 			 T1r = T1p - T1q; | ||
|  | 			 T2v = T1p + T1q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, T16, T17; | ||
|  | 			 Tu = ri[WS(is, 12)]; | ||
|  | 			 Tv = ri[WS(is, 2)]; | ||
|  | 			 Tw = Tu + Tv; | ||
|  | 			 T1t = Tu - Tv; | ||
|  | 			 T16 = ii[WS(is, 12)]; | ||
|  | 			 T17 = ii[WS(is, 2)]; | ||
|  | 			 T18 = T16 - T17; | ||
|  | 			 T2x = T16 + T17; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tx, Ty, T1u, T1v; | ||
|  | 			 Tx = ri[WS(is, 17)]; | ||
|  | 			 Ty = ri[WS(is, 7)]; | ||
|  | 			 Tz = Tx + Ty; | ||
|  | 			 T19 = Tx - Ty; | ||
|  | 			 T1u = ii[WS(is, 17)]; | ||
|  | 			 T1v = ii[WS(is, 7)]; | ||
|  | 			 T1w = T1u - T1v; | ||
|  | 			 T2y = T1u + T1v; | ||
|  | 		    } | ||
|  | 		    Tt = Tp - Ts; | ||
|  | 		    TA = Tw - Tz; | ||
|  | 		    TB = Tt + TA; | ||
|  | 		    T2w = T2u - T2v; | ||
|  | 		    T2z = T2x - T2y; | ||
|  | 		    T2P = T2w + T2z; | ||
|  | 		    T35 = T2u + T2v; | ||
|  | 		    T36 = T2x + T2y; | ||
|  | 		    T3d = T35 + T36; | ||
|  | 		    TH = Tp + Ts; | ||
|  | 		    TI = Tw + Tz; | ||
|  | 		    TJ = TH + TI; | ||
|  | 		    T15 = T13 - T14; | ||
|  | 		    T1a = T18 - T19; | ||
|  | 		    T1b = T15 + T1a; | ||
|  | 		    T1s = T1o - T1r; | ||
|  | 		    T1x = T1t - T1w; | ||
|  | 		    T1T = T1s + T1x; | ||
|  | 		    T29 = T1o + T1r; | ||
|  | 		    T2a = T1t + T1w; | ||
|  | 		    T2h = T29 + T2a; | ||
|  | 		    T1h = T14 + T13; | ||
|  | 		    T1i = T19 + T18; | ||
|  | 		    T1j = T1h + T1i; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; | ||
|  | 		    E T2F; | ||
|  | 		    { | ||
|  | 			 E T8, T9, TQ, TR; | ||
|  | 			 T8 = ri[WS(is, 4)]; | ||
|  | 			 T9 = ri[WS(is, 14)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 T1z = T8 - T9; | ||
|  | 			 TQ = ii[WS(is, 4)]; | ||
|  | 			 TR = ii[WS(is, 14)]; | ||
|  | 			 TS = TQ - TR; | ||
|  | 			 T2B = TQ + TR; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, T1A, T1B; | ||
|  | 			 Tb = ri[WS(is, 9)]; | ||
|  | 			 Tc = ri[WS(is, 19)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TT = Tb - Tc; | ||
|  | 			 T1A = ii[WS(is, 9)]; | ||
|  | 			 T1B = ii[WS(is, 19)]; | ||
|  | 			 T1C = T1A - T1B; | ||
|  | 			 T2C = T1A + T1B; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf, Tg, TV, TW; | ||
|  | 			 Tf = ri[WS(is, 16)]; | ||
|  | 			 Tg = ri[WS(is, 6)]; | ||
|  | 			 Th = Tf + Tg; | ||
|  | 			 T1E = Tf - Tg; | ||
|  | 			 TV = ii[WS(is, 16)]; | ||
|  | 			 TW = ii[WS(is, 6)]; | ||
|  | 			 TX = TV - TW; | ||
|  | 			 T2E = TV + TW; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, T1F, T1G; | ||
|  | 			 Ti = ri[WS(is, 1)]; | ||
|  | 			 Tj = ri[WS(is, 11)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 TY = Ti - Tj; | ||
|  | 			 T1F = ii[WS(is, 1)]; | ||
|  | 			 T1G = ii[WS(is, 11)]; | ||
|  | 			 T1H = T1F - T1G; | ||
|  | 			 T2F = T1F + T1G; | ||
|  | 		    } | ||
|  | 		    Te = Ta - Td; | ||
|  | 		    Tl = Th - Tk; | ||
|  | 		    Tm = Te + Tl; | ||
|  | 		    T2D = T2B - T2C; | ||
|  | 		    T2G = T2E - T2F; | ||
|  | 		    T2O = T2D + T2G; | ||
|  | 		    T32 = T2B + T2C; | ||
|  | 		    T33 = T2E + T2F; | ||
|  | 		    T3c = T32 + T33; | ||
|  | 		    TE = Ta + Td; | ||
|  | 		    TF = Th + Tk; | ||
|  | 		    TG = TE + TF; | ||
|  | 		    TU = TS - TT; | ||
|  | 		    TZ = TX - TY; | ||
|  | 		    T10 = TU + TZ; | ||
|  | 		    T1D = T1z - T1C; | ||
|  | 		    T1I = T1E - T1H; | ||
|  | 		    T1S = T1D + T1I; | ||
|  | 		    T26 = T1z + T1C; | ||
|  | 		    T27 = T1E + T1H; | ||
|  | 		    T2g = T26 + T27; | ||
|  | 		    T1e = TT + TS; | ||
|  | 		    T1f = TY + TX; | ||
|  | 		    T1g = T1e + T1f; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; | ||
|  | 		    T2s = Tm - TB; | ||
|  | 		    TC = Tm + TB; | ||
|  | 		    T2r = FNMS(KP250000000, TC, T7); | ||
|  | 		    T2A = T2w - T2z; | ||
|  | 		    T2H = T2D - T2G; | ||
|  | 		    T2I = FNMS(KP618033988, T2H, T2A); | ||
|  | 		    T2K = FMA(KP618033988, T2A, T2H); | ||
|  | 		    ro[WS(os, 10)] = T7 + TC; | ||
|  | 		    T2J = FMA(KP559016994, T2s, T2r); | ||
|  | 		    ro[WS(os, 14)] = FNMS(KP951056516, T2K, T2J); | ||
|  | 		    ro[WS(os, 6)] = FMA(KP951056516, T2K, T2J); | ||
|  | 		    T2t = FNMS(KP559016994, T2s, T2r); | ||
|  | 		    ro[WS(os, 2)] = FNMS(KP951056516, T2I, T2t); | ||
|  | 		    ro[WS(os, 18)] = FMA(KP951056516, T2I, T2t); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2S, T2Q, T2R, T2W, T2Y, T2U, T2V, T2X, T2T; | ||
|  | 		    T2S = T2O - T2P; | ||
|  | 		    T2Q = T2O + T2P; | ||
|  | 		    T2R = FNMS(KP250000000, T2Q, T2N); | ||
|  | 		    T2U = Tt - TA; | ||
|  | 		    T2V = Te - Tl; | ||
|  | 		    T2W = FNMS(KP618033988, T2V, T2U); | ||
|  | 		    T2Y = FMA(KP618033988, T2U, T2V); | ||
|  | 		    io[WS(os, 10)] = T2N + T2Q; | ||
|  | 		    T2X = FMA(KP559016994, T2S, T2R); | ||
|  | 		    io[WS(os, 6)] = FNMS(KP951056516, T2Y, T2X); | ||
|  | 		    io[WS(os, 14)] = FMA(KP951056516, T2Y, T2X); | ||
|  | 		    T2T = FNMS(KP559016994, T2S, T2R); | ||
|  | 		    io[WS(os, 2)] = FMA(KP951056516, T2W, T2T); | ||
|  | 		    io[WS(os, 18)] = FNMS(KP951056516, T2W, T2T); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T30, TK, T2Z, T38, T3a, T34, T37, T39, T31; | ||
|  | 		    T30 = TG - TJ; | ||
|  | 		    TK = TG + TJ; | ||
|  | 		    T2Z = FNMS(KP250000000, TK, TD); | ||
|  | 		    T34 = T32 - T33; | ||
|  | 		    T37 = T35 - T36; | ||
|  | 		    T38 = FMA(KP618033988, T37, T34); | ||
|  | 		    T3a = FNMS(KP618033988, T34, T37); | ||
|  | 		    ro[0] = TD + TK; | ||
|  | 		    T39 = FNMS(KP559016994, T30, T2Z); | ||
|  | 		    ro[WS(os, 12)] = FNMS(KP951056516, T3a, T39); | ||
|  | 		    ro[WS(os, 8)] = FMA(KP951056516, T3a, T39); | ||
|  | 		    T31 = FMA(KP559016994, T30, T2Z); | ||
|  | 		    ro[WS(os, 4)] = FNMS(KP951056516, T38, T31); | ||
|  | 		    ro[WS(os, 16)] = FMA(KP951056516, T38, T31); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3g, T3e, T3f, T3k, T3m, T3i, T3j, T3l, T3h; | ||
|  | 		    T3g = T3c - T3d; | ||
|  | 		    T3e = T3c + T3d; | ||
|  | 		    T3f = FNMS(KP250000000, T3e, T3b); | ||
|  | 		    T3i = TE - TF; | ||
|  | 		    T3j = TH - TI; | ||
|  | 		    T3k = FMA(KP618033988, T3j, T3i); | ||
|  | 		    T3m = FNMS(KP618033988, T3i, T3j); | ||
|  | 		    io[0] = T3b + T3e; | ||
|  | 		    T3l = FNMS(KP559016994, T3g, T3f); | ||
|  | 		    io[WS(os, 8)] = FNMS(KP951056516, T3m, T3l); | ||
|  | 		    io[WS(os, 12)] = FMA(KP951056516, T3m, T3l); | ||
|  | 		    T3h = FMA(KP559016994, T3g, T3f); | ||
|  | 		    io[WS(os, 4)] = FMA(KP951056516, T3k, T3h); | ||
|  | 		    io[WS(os, 16)] = FNMS(KP951056516, T3k, T3h); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T24, T1c, T23, T2c, T2e, T28, T2b, T2d, T25; | ||
|  | 		    T24 = T10 - T1b; | ||
|  | 		    T1c = T10 + T1b; | ||
|  | 		    T23 = FNMS(KP250000000, T1c, TP); | ||
|  | 		    T28 = T26 - T27; | ||
|  | 		    T2b = T29 - T2a; | ||
|  | 		    T2c = FMA(KP618033988, T2b, T28); | ||
|  | 		    T2e = FNMS(KP618033988, T28, T2b); | ||
|  | 		    io[WS(os, 5)] = TP + T1c; | ||
|  | 		    T2d = FNMS(KP559016994, T24, T23); | ||
|  | 		    io[WS(os, 13)] = FNMS(KP951056516, T2e, T2d); | ||
|  | 		    io[WS(os, 17)] = FMA(KP951056516, T2e, T2d); | ||
|  | 		    T25 = FMA(KP559016994, T24, T23); | ||
|  | 		    io[WS(os, 1)] = FNMS(KP951056516, T2c, T25); | ||
|  | 		    io[WS(os, 9)] = FMA(KP951056516, T2c, T25); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2k, T2i, T2j, T2o, T2q, T2m, T2n, T2p, T2l; | ||
|  | 		    T2k = T2g - T2h; | ||
|  | 		    T2i = T2g + T2h; | ||
|  | 		    T2j = FNMS(KP250000000, T2i, T2f); | ||
|  | 		    T2m = TU - TZ; | ||
|  | 		    T2n = T15 - T1a; | ||
|  | 		    T2o = FMA(KP618033988, T2n, T2m); | ||
|  | 		    T2q = FNMS(KP618033988, T2m, T2n); | ||
|  | 		    ro[WS(os, 5)] = T2f + T2i; | ||
|  | 		    T2p = FNMS(KP559016994, T2k, T2j); | ||
|  | 		    ro[WS(os, 13)] = FMA(KP951056516, T2q, T2p); | ||
|  | 		    ro[WS(os, 17)] = FNMS(KP951056516, T2q, T2p); | ||
|  | 		    T2l = FMA(KP559016994, T2k, T2j); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP951056516, T2o, T2l); | ||
|  | 		    ro[WS(os, 9)] = FNMS(KP951056516, T2o, T2l); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; | ||
|  | 		    T1m = T1g - T1j; | ||
|  | 		    T1k = T1g + T1j; | ||
|  | 		    T1l = FNMS(KP250000000, T1k, T1d); | ||
|  | 		    T1y = T1s - T1x; | ||
|  | 		    T1J = T1D - T1I; | ||
|  | 		    T1K = FNMS(KP618033988, T1J, T1y); | ||
|  | 		    T1M = FMA(KP618033988, T1y, T1J); | ||
|  | 		    io[WS(os, 15)] = T1d + T1k; | ||
|  | 		    T1L = FMA(KP559016994, T1m, T1l); | ||
|  | 		    io[WS(os, 11)] = FNMS(KP951056516, T1M, T1L); | ||
|  | 		    io[WS(os, 19)] = FMA(KP951056516, T1M, T1L); | ||
|  | 		    T1n = FNMS(KP559016994, T1m, T1l); | ||
|  | 		    io[WS(os, 3)] = FNMS(KP951056516, T1K, T1n); | ||
|  | 		    io[WS(os, 7)] = FMA(KP951056516, T1K, T1n); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X; | ||
|  | 		    T1W = T1S - T1T; | ||
|  | 		    T1U = T1S + T1T; | ||
|  | 		    T1V = FNMS(KP250000000, T1U, T1R); | ||
|  | 		    T1Y = T1h - T1i; | ||
|  | 		    T1Z = T1e - T1f; | ||
|  | 		    T20 = FNMS(KP618033988, T1Z, T1Y); | ||
|  | 		    T22 = FMA(KP618033988, T1Y, T1Z); | ||
|  | 		    ro[WS(os, 15)] = T1R + T1U; | ||
|  | 		    T21 = FMA(KP559016994, T1W, T1V); | ||
|  | 		    ro[WS(os, 11)] = FMA(KP951056516, T22, T21); | ||
|  | 		    ro[WS(os, 19)] = FNMS(KP951056516, T22, T21); | ||
|  | 		    T1X = FNMS(KP559016994, T1W, T1V); | ||
|  | 		    ro[WS(os, 3)] = FMA(KP951056516, T20, T1X); | ||
|  | 		    ro[WS(os, 7)] = FNMS(KP951056516, T20, T1X); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 20, "n1_20", { 136, 0, 72, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_20) (planner *p) { X(kdft_register) (p, n1_20, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 208 FP additions, 48 FP multiplications, | ||
|  |  * (or, 184 additions, 24 multiplications, 24 fused multiply/add), | ||
|  |  * 81 stack variables, 4 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { | ||
|  | 	       E T7, T2Q, T3h, TD, TP, T1U, T2l, T1d, Tt, TA, TB, T2w, T2z, T2S, T35; | ||
|  | 	       E T36, T3f, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1W, T29, T2a, T2j, T1h; | ||
|  | 	       E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2R, T32, T33, T3e, TE, TF, TG, TU; | ||
|  | 	       E TZ, T10, T1D, T1I, T1V, T26, T27, T2i, T1e, T1f, T1g; | ||
|  | 	       { | ||
|  | 		    E T3, T1Q, TN, T2O, T6, TO, T1T, T2P; | ||
|  | 		    { | ||
|  | 			 E T1, T2, TL, TM; | ||
|  | 			 T1 = ri[0]; | ||
|  | 			 T2 = ri[WS(is, 10)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 T1Q = T1 - T2; | ||
|  | 			 TL = ii[0]; | ||
|  | 			 TM = ii[WS(is, 10)]; | ||
|  | 			 TN = TL - TM; | ||
|  | 			 T2O = TL + TM; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, T1R, T1S; | ||
|  | 			 T4 = ri[WS(is, 5)]; | ||
|  | 			 T5 = ri[WS(is, 15)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 TO = T4 - T5; | ||
|  | 			 T1R = ii[WS(is, 5)]; | ||
|  | 			 T1S = ii[WS(is, 15)]; | ||
|  | 			 T1T = T1R - T1S; | ||
|  | 			 T2P = T1R + T1S; | ||
|  | 		    } | ||
|  | 		    T7 = T3 - T6; | ||
|  | 		    T2Q = T2O - T2P; | ||
|  | 		    T3h = T2O + T2P; | ||
|  | 		    TD = T3 + T6; | ||
|  | 		    TP = TN - TO; | ||
|  | 		    T1U = T1Q - T1T; | ||
|  | 		    T2l = T1Q + T1T; | ||
|  | 		    T1d = TO + TN; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; | ||
|  | 		    E T2y; | ||
|  | 		    { | ||
|  | 			 E Tn, To, T11, T12; | ||
|  | 			 Tn = ri[WS(is, 8)]; | ||
|  | 			 To = ri[WS(is, 18)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 T1o = Tn - To; | ||
|  | 			 T11 = ii[WS(is, 8)]; | ||
|  | 			 T12 = ii[WS(is, 18)]; | ||
|  | 			 T13 = T11 - T12; | ||
|  | 			 T2u = T11 + T12; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Tr, T1p, T1q; | ||
|  | 			 Tq = ri[WS(is, 13)]; | ||
|  | 			 Tr = ri[WS(is, 3)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T14 = Tq - Tr; | ||
|  | 			 T1p = ii[WS(is, 13)]; | ||
|  | 			 T1q = ii[WS(is, 3)]; | ||
|  | 			 T1r = T1p - T1q; | ||
|  | 			 T2v = T1p + T1q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, T16, T17; | ||
|  | 			 Tu = ri[WS(is, 12)]; | ||
|  | 			 Tv = ri[WS(is, 2)]; | ||
|  | 			 Tw = Tu + Tv; | ||
|  | 			 T1t = Tu - Tv; | ||
|  | 			 T16 = ii[WS(is, 12)]; | ||
|  | 			 T17 = ii[WS(is, 2)]; | ||
|  | 			 T18 = T16 - T17; | ||
|  | 			 T2x = T16 + T17; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tx, Ty, T1u, T1v; | ||
|  | 			 Tx = ri[WS(is, 17)]; | ||
|  | 			 Ty = ri[WS(is, 7)]; | ||
|  | 			 Tz = Tx + Ty; | ||
|  | 			 T19 = Tx - Ty; | ||
|  | 			 T1u = ii[WS(is, 17)]; | ||
|  | 			 T1v = ii[WS(is, 7)]; | ||
|  | 			 T1w = T1u - T1v; | ||
|  | 			 T2y = T1u + T1v; | ||
|  | 		    } | ||
|  | 		    Tt = Tp - Ts; | ||
|  | 		    TA = Tw - Tz; | ||
|  | 		    TB = Tt + TA; | ||
|  | 		    T2w = T2u - T2v; | ||
|  | 		    T2z = T2x - T2y; | ||
|  | 		    T2S = T2w + T2z; | ||
|  | 		    T35 = T2u + T2v; | ||
|  | 		    T36 = T2x + T2y; | ||
|  | 		    T3f = T35 + T36; | ||
|  | 		    TH = Tp + Ts; | ||
|  | 		    TI = Tw + Tz; | ||
|  | 		    TJ = TH + TI; | ||
|  | 		    T15 = T13 - T14; | ||
|  | 		    T1a = T18 - T19; | ||
|  | 		    T1b = T15 + T1a; | ||
|  | 		    T1s = T1o - T1r; | ||
|  | 		    T1x = T1t - T1w; | ||
|  | 		    T1W = T1s + T1x; | ||
|  | 		    T29 = T1o + T1r; | ||
|  | 		    T2a = T1t + T1w; | ||
|  | 		    T2j = T29 + T2a; | ||
|  | 		    T1h = T14 + T13; | ||
|  | 		    T1i = T19 + T18; | ||
|  | 		    T1j = T1h + T1i; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; | ||
|  | 		    E T2F; | ||
|  | 		    { | ||
|  | 			 E T8, T9, TQ, TR; | ||
|  | 			 T8 = ri[WS(is, 4)]; | ||
|  | 			 T9 = ri[WS(is, 14)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 T1z = T8 - T9; | ||
|  | 			 TQ = ii[WS(is, 4)]; | ||
|  | 			 TR = ii[WS(is, 14)]; | ||
|  | 			 TS = TQ - TR; | ||
|  | 			 T2B = TQ + TR; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, T1A, T1B; | ||
|  | 			 Tb = ri[WS(is, 9)]; | ||
|  | 			 Tc = ri[WS(is, 19)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TT = Tb - Tc; | ||
|  | 			 T1A = ii[WS(is, 9)]; | ||
|  | 			 T1B = ii[WS(is, 19)]; | ||
|  | 			 T1C = T1A - T1B; | ||
|  | 			 T2C = T1A + T1B; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tf, Tg, TV, TW; | ||
|  | 			 Tf = ri[WS(is, 16)]; | ||
|  | 			 Tg = ri[WS(is, 6)]; | ||
|  | 			 Th = Tf + Tg; | ||
|  | 			 T1E = Tf - Tg; | ||
|  | 			 TV = ii[WS(is, 16)]; | ||
|  | 			 TW = ii[WS(is, 6)]; | ||
|  | 			 TX = TV - TW; | ||
|  | 			 T2E = TV + TW; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, T1F, T1G; | ||
|  | 			 Ti = ri[WS(is, 1)]; | ||
|  | 			 Tj = ri[WS(is, 11)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 TY = Ti - Tj; | ||
|  | 			 T1F = ii[WS(is, 1)]; | ||
|  | 			 T1G = ii[WS(is, 11)]; | ||
|  | 			 T1H = T1F - T1G; | ||
|  | 			 T2F = T1F + T1G; | ||
|  | 		    } | ||
|  | 		    Te = Ta - Td; | ||
|  | 		    Tl = Th - Tk; | ||
|  | 		    Tm = Te + Tl; | ||
|  | 		    T2D = T2B - T2C; | ||
|  | 		    T2G = T2E - T2F; | ||
|  | 		    T2R = T2D + T2G; | ||
|  | 		    T32 = T2B + T2C; | ||
|  | 		    T33 = T2E + T2F; | ||
|  | 		    T3e = T32 + T33; | ||
|  | 		    TE = Ta + Td; | ||
|  | 		    TF = Th + Tk; | ||
|  | 		    TG = TE + TF; | ||
|  | 		    TU = TS - TT; | ||
|  | 		    TZ = TX - TY; | ||
|  | 		    T10 = TU + TZ; | ||
|  | 		    T1D = T1z - T1C; | ||
|  | 		    T1I = T1E - T1H; | ||
|  | 		    T1V = T1D + T1I; | ||
|  | 		    T26 = T1z + T1C; | ||
|  | 		    T27 = T1E + T1H; | ||
|  | 		    T2i = T26 + T27; | ||
|  | 		    T1e = TT + TS; | ||
|  | 		    T1f = TY + TX; | ||
|  | 		    T1g = T1e + T1f; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; | ||
|  | 		    T2s = KP559016994 * (Tm - TB); | ||
|  | 		    TC = Tm + TB; | ||
|  | 		    T2r = FNMS(KP250000000, TC, T7); | ||
|  | 		    T2A = T2w - T2z; | ||
|  | 		    T2H = T2D - T2G; | ||
|  | 		    T2I = FNMS(KP587785252, T2H, KP951056516 * T2A); | ||
|  | 		    T2K = FMA(KP951056516, T2H, KP587785252 * T2A); | ||
|  | 		    ro[WS(os, 10)] = T7 + TC; | ||
|  | 		    T2J = T2s + T2r; | ||
|  | 		    ro[WS(os, 14)] = T2J - T2K; | ||
|  | 		    ro[WS(os, 6)] = T2J + T2K; | ||
|  | 		    T2t = T2r - T2s; | ||
|  | 		    ro[WS(os, 2)] = T2t - T2I; | ||
|  | 		    ro[WS(os, 18)] = T2t + T2I; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2V, T2T, T2U, T2N, T2Y, T2L, T2M, T2X, T2W; | ||
|  | 		    T2V = KP559016994 * (T2R - T2S); | ||
|  | 		    T2T = T2R + T2S; | ||
|  | 		    T2U = FNMS(KP250000000, T2T, T2Q); | ||
|  | 		    T2L = Tt - TA; | ||
|  | 		    T2M = Te - Tl; | ||
|  | 		    T2N = FNMS(KP587785252, T2M, KP951056516 * T2L); | ||
|  | 		    T2Y = FMA(KP951056516, T2M, KP587785252 * T2L); | ||
|  | 		    io[WS(os, 10)] = T2Q + T2T; | ||
|  | 		    T2X = T2V + T2U; | ||
|  | 		    io[WS(os, 6)] = T2X - T2Y; | ||
|  | 		    io[WS(os, 14)] = T2Y + T2X; | ||
|  | 		    T2W = T2U - T2V; | ||
|  | 		    io[WS(os, 2)] = T2N + T2W; | ||
|  | 		    io[WS(os, 18)] = T2W - T2N; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2Z, TK, T30, T38, T3a, T34, T37, T39, T31; | ||
|  | 		    T2Z = KP559016994 * (TG - TJ); | ||
|  | 		    TK = TG + TJ; | ||
|  | 		    T30 = FNMS(KP250000000, TK, TD); | ||
|  | 		    T34 = T32 - T33; | ||
|  | 		    T37 = T35 - T36; | ||
|  | 		    T38 = FMA(KP951056516, T34, KP587785252 * T37); | ||
|  | 		    T3a = FNMS(KP587785252, T34, KP951056516 * T37); | ||
|  | 		    ro[0] = TD + TK; | ||
|  | 		    T39 = T30 - T2Z; | ||
|  | 		    ro[WS(os, 12)] = T39 - T3a; | ||
|  | 		    ro[WS(os, 8)] = T39 + T3a; | ||
|  | 		    T31 = T2Z + T30; | ||
|  | 		    ro[WS(os, 4)] = T31 - T38; | ||
|  | 		    ro[WS(os, 16)] = T31 + T38; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3g, T3i, T3j, T3d, T3m, T3b, T3c, T3l, T3k; | ||
|  | 		    T3g = KP559016994 * (T3e - T3f); | ||
|  | 		    T3i = T3e + T3f; | ||
|  | 		    T3j = FNMS(KP250000000, T3i, T3h); | ||
|  | 		    T3b = TE - TF; | ||
|  | 		    T3c = TH - TI; | ||
|  | 		    T3d = FMA(KP951056516, T3b, KP587785252 * T3c); | ||
|  | 		    T3m = FNMS(KP587785252, T3b, KP951056516 * T3c); | ||
|  | 		    io[0] = T3h + T3i; | ||
|  | 		    T3l = T3j - T3g; | ||
|  | 		    io[WS(os, 8)] = T3l - T3m; | ||
|  | 		    io[WS(os, 12)] = T3m + T3l; | ||
|  | 		    T3k = T3g + T3j; | ||
|  | 		    io[WS(os, 4)] = T3d + T3k; | ||
|  | 		    io[WS(os, 16)] = T3k - T3d; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T23, T1c, T24, T2c, T2e, T28, T2b, T2d, T25; | ||
|  | 		    T23 = KP559016994 * (T10 - T1b); | ||
|  | 		    T1c = T10 + T1b; | ||
|  | 		    T24 = FNMS(KP250000000, T1c, TP); | ||
|  | 		    T28 = T26 - T27; | ||
|  | 		    T2b = T29 - T2a; | ||
|  | 		    T2c = FMA(KP951056516, T28, KP587785252 * T2b); | ||
|  | 		    T2e = FNMS(KP587785252, T28, KP951056516 * T2b); | ||
|  | 		    io[WS(os, 5)] = TP + T1c; | ||
|  | 		    T2d = T24 - T23; | ||
|  | 		    io[WS(os, 13)] = T2d - T2e; | ||
|  | 		    io[WS(os, 17)] = T2d + T2e; | ||
|  | 		    T25 = T23 + T24; | ||
|  | 		    io[WS(os, 1)] = T25 - T2c; | ||
|  | 		    io[WS(os, 9)] = T25 + T2c; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2k, T2m, T2n, T2h, T2p, T2f, T2g, T2q, T2o; | ||
|  | 		    T2k = KP559016994 * (T2i - T2j); | ||
|  | 		    T2m = T2i + T2j; | ||
|  | 		    T2n = FNMS(KP250000000, T2m, T2l); | ||
|  | 		    T2f = TU - TZ; | ||
|  | 		    T2g = T15 - T1a; | ||
|  | 		    T2h = FMA(KP951056516, T2f, KP587785252 * T2g); | ||
|  | 		    T2p = FNMS(KP587785252, T2f, KP951056516 * T2g); | ||
|  | 		    ro[WS(os, 5)] = T2l + T2m; | ||
|  | 		    T2q = T2n - T2k; | ||
|  | 		    ro[WS(os, 13)] = T2p + T2q; | ||
|  | 		    ro[WS(os, 17)] = T2q - T2p; | ||
|  | 		    T2o = T2k + T2n; | ||
|  | 		    ro[WS(os, 1)] = T2h + T2o; | ||
|  | 		    ro[WS(os, 9)] = T2o - T2h; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; | ||
|  | 		    T1m = KP559016994 * (T1g - T1j); | ||
|  | 		    T1k = T1g + T1j; | ||
|  | 		    T1l = FNMS(KP250000000, T1k, T1d); | ||
|  | 		    T1y = T1s - T1x; | ||
|  | 		    T1J = T1D - T1I; | ||
|  | 		    T1K = FNMS(KP587785252, T1J, KP951056516 * T1y); | ||
|  | 		    T1M = FMA(KP951056516, T1J, KP587785252 * T1y); | ||
|  | 		    io[WS(os, 15)] = T1d + T1k; | ||
|  | 		    T1L = T1m + T1l; | ||
|  | 		    io[WS(os, 11)] = T1L - T1M; | ||
|  | 		    io[WS(os, 19)] = T1L + T1M; | ||
|  | 		    T1n = T1l - T1m; | ||
|  | 		    io[WS(os, 3)] = T1n - T1K; | ||
|  | 		    io[WS(os, 7)] = T1n + T1K; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1Z, T1X, T1Y, T1P, T21, T1N, T1O, T22, T20; | ||
|  | 		    T1Z = KP559016994 * (T1V - T1W); | ||
|  | 		    T1X = T1V + T1W; | ||
|  | 		    T1Y = FNMS(KP250000000, T1X, T1U); | ||
|  | 		    T1N = T1h - T1i; | ||
|  | 		    T1O = T1e - T1f; | ||
|  | 		    T1P = FNMS(KP587785252, T1O, KP951056516 * T1N); | ||
|  | 		    T21 = FMA(KP951056516, T1O, KP587785252 * T1N); | ||
|  | 		    ro[WS(os, 15)] = T1U + T1X; | ||
|  | 		    T22 = T1Z + T1Y; | ||
|  | 		    ro[WS(os, 11)] = T21 + T22; | ||
|  | 		    ro[WS(os, 19)] = T22 - T21; | ||
|  | 		    T20 = T1Y - T1Z; | ||
|  | 		    ro[WS(os, 3)] = T1P + T20; | ||
|  | 		    ro[WS(os, 7)] = T20 - T1P; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 20, "n1_20", { 184, 24, 24, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_20) (planner *p) { X(kdft_register) (p, n1_20, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |