224 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			224 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:24 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include rdft/scalar/r2cfII.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 42 FP additions, 34 FP multiplications, | ||
|  |  * (or, 12 additions, 4 multiplications, 30 fused multiply/add), | ||
|  |  * 48 stack variables, 17 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cfII.h"
 | ||
|  | 
 | ||
|  | static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DK(KP879385241, +0.879385241571816768108218554649462939872416269); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP898197570, +0.898197570222573798468955502359086394667167570); | ||
|  |      DK(KP673648177, +0.673648177666930348851716626769314796000375677); | ||
|  |      DK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DK(KP907603734, +0.907603734547952313649323976213898122064543220); | ||
|  |      DK(KP666666666, +0.666666666666666666666666666666666666666666667); | ||
|  |      DK(KP826351822, +0.826351822333069651148283373230685203999624323); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP315207469, +0.315207469095904627298647952427796244129086440); | ||
|  |      DK(KP420276625, +0.420276625461206169731530603237061658838781920); | ||
|  |      DK(KP203604859, +0.203604859554852403062088995281827210665664861); | ||
|  |      DK(KP152703644, +0.152703644666139302296566746461370407999248646); | ||
|  |      DK(KP726681596, +0.726681596905677465811651808188092531873167623); | ||
|  |      DK(KP968908795, +0.968908795874236621082202410917456709164223497); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { | ||
|  | 	       E T1, T4, To, Ta, Tm, TB, Tq, Tt, Tf, Tj, TA, Tr, Ts, T2, T3; | ||
|  | 	       E T5, Tg; | ||
|  | 	       T1 = R0[0]; | ||
|  | 	       T2 = R0[WS(rs, 3)]; | ||
|  | 	       T3 = R1[WS(rs, 1)]; | ||
|  | 	       T4 = T2 - T3; | ||
|  | 	       To = T2 + T3; | ||
|  | 	       { | ||
|  | 		    E T6, T9, Tk, T7, T8, Tl; | ||
|  | 		    T6 = R0[WS(rs, 1)]; | ||
|  | 		    T7 = R0[WS(rs, 4)]; | ||
|  | 		    T8 = R1[WS(rs, 2)]; | ||
|  | 		    T9 = T7 - T8; | ||
|  | 		    Tk = T7 + T8; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Tl = FNMS(KP500000000, T9, T6); | ||
|  | 		    Tm = FMA(KP968908795, Tl, Tk); | ||
|  | 		    TB = FNMS(KP726681596, Tk, Tl); | ||
|  | 		    Tq = FNMS(KP152703644, Tk, Tl); | ||
|  | 		    Tt = FMA(KP203604859, Tl, Tk); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tb, Te, Ti, Tc, Td, Th; | ||
|  | 		    Tb = R0[WS(rs, 2)]; | ||
|  | 		    Tc = R1[0]; | ||
|  | 		    Td = R1[WS(rs, 3)]; | ||
|  | 		    Te = Tc + Td; | ||
|  | 		    Ti = Tc - Td; | ||
|  | 		    Tf = Tb - Te; | ||
|  | 		    Th = FMA(KP500000000, Te, Tb); | ||
|  | 		    Tj = FNMS(KP152703644, Ti, Th); | ||
|  | 		    TA = FMA(KP203604859, Th, Ti); | ||
|  | 		    Tr = FNMS(KP420276625, Th, Ti); | ||
|  | 		    Ts = FMA(KP315207469, Ti, Th); | ||
|  | 	       } | ||
|  | 	       Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta); | ||
|  | 	       T5 = T1 + T4; | ||
|  | 	       Tg = Ta + Tf; | ||
|  | 	       Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5); | ||
|  | 	       Cr[WS(csr, 4)] = T5 + Tg; | ||
|  | 	       { | ||
|  | 		    E Ty, Tx, Tz, Tn, TD, TC; | ||
|  | 		    Tx = FNMS(KP826351822, Tr, Tq); | ||
|  | 		    Ty = FNMS(KP666666666, Tx, Tt); | ||
|  | 		    Tz = FMA(KP907603734, Ty, Ts); | ||
|  | 		    Ci[WS(csi, 2)] = KP866025403 * (FNMS(KP939692620, Tz, To)); | ||
|  | 		    Tn = FMA(KP673648177, Tm, Tj); | ||
|  | 		    TC = FNMS(KP898197570, TB, TA); | ||
|  | 		    TD = FNMS(KP666666666, Tn, TC); | ||
|  | 		    Ci[0] = -(KP984807753 * (FMA(KP879385241, To, Tn))); | ||
|  | 		    Ci[WS(csi, 3)] = -(KP866025403 * (FMA(KP852868531, TD, To))); | ||
|  | 		    { | ||
|  | 			 E Tp, Tv, TF, TG, Tu, TE, Tw; | ||
|  | 			 Tp = FNMS(KP500000000, T4, T1); | ||
|  | 			 Tu = FNMS(KP907603734, Tt, Ts); | ||
|  | 			 Tv = FNMS(KP666666666, Tu, Tr); | ||
|  | 			 TE = FNMS(KP673648177, Tm, Tj); | ||
|  | 			 TF = FMA(KP898197570, TB, TA); | ||
|  | 			 TG = FMA(KP500000000, TF, TE); | ||
|  | 			 Cr[WS(csr, 3)] = FNMS(KP852868531, TG, Tp); | ||
|  | 			 Cr[0] = FMA(KP852868531, TF, Tp); | ||
|  | 			 Tw = FMA(KP826351822, Tv, Tq); | ||
|  | 			 Cr[WS(csr, 2)] = FNMS(KP852868531, Tw, Tp); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 9, "r2cfII_9", { 12, 4, 30, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cfII_9) (planner *p) { X(kr2c_register) (p, r2cfII_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include rdft/scalar/r2cfII.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 42 FP additions, 30 FP multiplications, | ||
|  |  * (or, 25 additions, 13 multiplications, 17 fused multiply/add), | ||
|  |  * 39 stack variables, 14 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cfII.h"
 | ||
|  | 
 | ||
|  | static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP663413948, +0.663413948168938396205421319635891297216863310); | ||
|  |      DK(KP642787609, +0.642787609686539326322643409907263432907559884); | ||
|  |      DK(KP556670399, +0.556670399226419366452912952047023132968291906); | ||
|  |      DK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DK(KP173648177, +0.173648177666930348851716626769314796000375677); | ||
|  |      DK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DK(KP150383733, +0.150383733180435296639271897612501926072238258); | ||
|  |      DK(KP813797681, +0.813797681349373692844693217248393223289101568); | ||
|  |      DK(KP342020143, +0.342020143325668733044099614682259580763083368); | ||
|  |      DK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DK(KP296198132, +0.296198132726023843175338011893050938967728390); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { | ||
|  | 	       E T1, T4, To, Ta, Tl, Tk, Tf, Ti, Th, T2, T3, T5, Tg; | ||
|  | 	       T1 = R0[0]; | ||
|  | 	       T2 = R1[WS(rs, 1)]; | ||
|  | 	       T3 = R0[WS(rs, 3)]; | ||
|  | 	       T4 = T2 - T3; | ||
|  | 	       To = T2 + T3; | ||
|  | 	       { | ||
|  | 		    E T6, T7, T8, T9; | ||
|  | 		    T6 = R0[WS(rs, 1)]; | ||
|  | 		    T7 = R1[WS(rs, 2)]; | ||
|  | 		    T8 = R0[WS(rs, 4)]; | ||
|  | 		    T9 = T7 - T8; | ||
|  | 		    Ta = T6 - T9; | ||
|  | 		    Tl = T7 + T8; | ||
|  | 		    Tk = FMA(KP500000000, T9, T6); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tb, Tc, Td, Te; | ||
|  | 		    Tb = R0[WS(rs, 2)]; | ||
|  | 		    Tc = R1[0]; | ||
|  | 		    Td = R1[WS(rs, 3)]; | ||
|  | 		    Te = Tc + Td; | ||
|  | 		    Tf = Tb - Te; | ||
|  | 		    Ti = FMA(KP500000000, Te, Tb); | ||
|  | 		    Th = Tc - Td; | ||
|  | 	       } | ||
|  | 	       Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta); | ||
|  | 	       T5 = T1 - T4; | ||
|  | 	       Tg = Ta + Tf; | ||
|  | 	       Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5); | ||
|  | 	       Cr[WS(csr, 4)] = T5 + Tg; | ||
|  | 	       { | ||
|  | 		    E Tr, Tt, Tw, Tv, Tu, Tp, Tq, Ts, Tj, Tm, Tn; | ||
|  | 		    Tr = FMA(KP500000000, T4, T1); | ||
|  | 		    Tt = FMA(KP296198132, Th, KP939692620 * Ti); | ||
|  | 		    Tw = FNMS(KP813797681, Th, KP342020143 * Ti); | ||
|  | 		    Tv = FNMS(KP984807753, Tk, KP150383733 * Tl); | ||
|  | 		    Tu = FMA(KP173648177, Tk, KP852868531 * Tl); | ||
|  | 		    Tp = FNMS(KP556670399, Tl, KP766044443 * Tk); | ||
|  | 		    Tq = FMA(KP852868531, Th, KP173648177 * Ti); | ||
|  | 		    Ts = Tp + Tq; | ||
|  | 		    Tj = FNMS(KP984807753, Ti, KP150383733 * Th); | ||
|  | 		    Tm = FMA(KP642787609, Tk, KP663413948 * Tl); | ||
|  | 		    Tn = Tj - Tm; | ||
|  | 		    Ci[0] = FNMS(KP866025403, To, Tn); | ||
|  | 		    Cr[0] = Tr + Ts; | ||
|  | 		    Ci[WS(csi, 3)] = FNMS(KP500000000, Tn, KP866025403 * ((Tp - Tq) - To)); | ||
|  | 		    Cr[WS(csr, 3)] = FMA(KP866025403, Tm + Tj, Tr) - (KP500000000 * Ts); | ||
|  | 		    Ci[WS(csi, 2)] = FMA(KP866025403, To - (Tu + Tt), KP500000000 * (Tw - Tv)); | ||
|  | 		    Cr[WS(csr, 2)] = FMA(KP500000000, Tt - Tu, Tr) + (KP866025403 * (Tv + Tw)); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 9, "r2cfII_9", { 25, 13, 17, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cfII_9) (planner *p) { X(kr2c_register) (p, r2cfII_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |