177 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			177 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
| 
								 | 
							
								(*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* various utility functions *)
							 | 
						||
| 
								 | 
							
								open List
							 | 
						||
| 
								 | 
							
								open Unix 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(*****************************************
							 | 
						||
| 
								 | 
							
								 * Integer operations
							 | 
						||
| 
								 | 
							
								 *****************************************)
							 | 
						||
| 
								 | 
							
								(* fint the inverse of n modulo m *)
							 | 
						||
| 
								 | 
							
								let invmod n m =
							 | 
						||
| 
								 | 
							
								    let rec loop i =
							 | 
						||
| 
								 | 
							
									if ((i * n) mod m == 1) then i
							 | 
						||
| 
								 | 
							
									else loop (i + 1)
							 | 
						||
| 
								 | 
							
								    in
							 | 
						||
| 
								 | 
							
									loop 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* Yooklid's algorithm *)
							 | 
						||
| 
								 | 
							
								let rec gcd n m =
							 | 
						||
| 
								 | 
							
								    if (n > m)
							 | 
						||
| 
								 | 
							
								      then gcd m n
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								      let r = m mod n
							 | 
						||
| 
								 | 
							
								      in
							 | 
						||
| 
								 | 
							
									  if (r == 0) then n
							 | 
						||
| 
								 | 
							
									  else gcd r n
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* reduce the fraction m/n to lowest terms, modulo factors of n/n *)
							 | 
						||
| 
								 | 
							
								let lowest_terms n m =
							 | 
						||
| 
								 | 
							
								    if (m mod n == 0) then
							 | 
						||
| 
								 | 
							
								      (1,0)
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								      let nn = (abs n) in let mm = m * (n / nn)
							 | 
						||
| 
								 | 
							
								      in let mpos = 
							 | 
						||
| 
								 | 
							
									  if (mm > 0) then (mm mod nn)
							 | 
						||
| 
								 | 
							
									  else (mm + (1 + (abs mm) / nn) * nn) mod nn
							 | 
						||
| 
								 | 
							
								      and d = gcd nn (abs mm)
							 | 
						||
| 
								 | 
							
								      in (nn / d, mpos / d)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* find a generator for the multiplicative group mod p
							 | 
						||
| 
								 | 
							
								   (where p must be prime for a generator to exist!!) *)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								exception No_Generator
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let find_generator p =
							 | 
						||
| 
								 | 
							
								    let rec period x prod =
							 | 
						||
| 
								 | 
							
								 	if (prod == 1) then 1
							 | 
						||
| 
								 | 
							
									else 1 + (period x (prod * x mod p))
							 | 
						||
| 
								 | 
							
								    in let rec findgen x =
							 | 
						||
| 
								 | 
							
									if (x == 0) then raise No_Generator
							 | 
						||
| 
								 | 
							
									else if ((period x x) == (p - 1)) then x
							 | 
						||
| 
								 | 
							
									else findgen ((x + 1) mod p)
							 | 
						||
| 
								 | 
							
								    in findgen 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* raise x to a power n modulo p (requires n > 0) (in principle,
							 | 
						||
| 
								 | 
							
								   negative powers would be fine, provided that x and p are relatively
							 | 
						||
| 
								 | 
							
								   prime...we don't need this functionality, though) *)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								exception Negative_Power
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let rec pow_mod x n p =
							 | 
						||
| 
								 | 
							
								    if (n == 0) then 1
							 | 
						||
| 
								 | 
							
								    else if (n < 0) then raise Negative_Power
							 | 
						||
| 
								 | 
							
								    else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p
							 | 
						||
| 
								 | 
							
								    else x * (pow_mod x (n - 1) p) mod p
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(******************************************
							 | 
						||
| 
								 | 
							
								 * auxiliary functions 
							 | 
						||
| 
								 | 
							
								 ******************************************)
							 | 
						||
| 
								 | 
							
								let rec forall id combiner a b f =
							 | 
						||
| 
								 | 
							
								    if (a >= b) then id
							 | 
						||
| 
								 | 
							
								    else combiner (f a) (forall id combiner (a + 1) b f)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let sum_list l = fold_right (+) l 0
							 | 
						||
| 
								 | 
							
								let max_list l = fold_right (max) l (-999999)
							 | 
						||
| 
								 | 
							
								let min_list l = fold_right (min) l 999999
							 | 
						||
| 
								 | 
							
								let count pred = fold_left 
							 | 
						||
| 
								 | 
							
								    (fun a elem -> if (pred elem) then 1 + a else a) 0
							 | 
						||
| 
								 | 
							
								let remove elem = List.filter (fun e -> (e != elem))
							 | 
						||
| 
								 | 
							
								let cons a b = a :: b
							 | 
						||
| 
								 | 
							
								let null = function 
							 | 
						||
| 
								 | 
							
								    [] -> true
							 | 
						||
| 
								 | 
							
								  | _ -> false
							 | 
						||
| 
								 | 
							
								let for_list l f = List.iter f l
							 | 
						||
| 
								 | 
							
								let rmap l f = List.map f l
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* functional composition *)
							 | 
						||
| 
								 | 
							
								let (@@) f g x = f (g x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let forall_flat a b = forall [] (@) a b
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let identity x = x
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let rec minimize f = function
							 | 
						||
| 
								 | 
							
								    [] -> None
							 | 
						||
| 
								 | 
							
								  | elem :: rest ->
							 | 
						||
| 
								 | 
							
								      match minimize f rest with
							 | 
						||
| 
								 | 
							
									None -> Some elem
							 | 
						||
| 
								 | 
							
								      |	Some x -> if (f x) >= (f elem) then Some elem else Some x
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let rec find_elem condition = function
							 | 
						||
| 
								 | 
							
								    [] -> None
							 | 
						||
| 
								 | 
							
								  | elem :: rest ->
							 | 
						||
| 
								 | 
							
								      if condition elem then
							 | 
						||
| 
								 | 
							
									Some elem
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
									find_elem condition rest
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* find x, x >= a, such that (p x) is true *)
							 | 
						||
| 
								 | 
							
								let rec suchthat a pred =
							 | 
						||
| 
								 | 
							
								  if (pred a) then a else suchthat (a + 1) pred
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* print an information message *)
							 | 
						||
| 
								 | 
							
								let info string =
							 | 
						||
| 
								 | 
							
								  if !Magic.verbose then begin
							 | 
						||
| 
								 | 
							
								    let now = Unix.times () 
							 | 
						||
| 
								 | 
							
								    and pid = Unix.getpid () in
							 | 
						||
| 
								 | 
							
								    prerr_string ((string_of_int pid) ^ ": " ^
							 | 
						||
| 
								 | 
							
										  "at t = " ^  (string_of_float now.tms_utime) ^ " : ");
							 | 
						||
| 
								 | 
							
								    prerr_string (string ^ "\n");
							 | 
						||
| 
								 | 
							
								    flush Pervasives.stderr;
							 | 
						||
| 
								 | 
							
								  end
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* iota n produces the list [0; 1; ...; n - 1] *)
							 | 
						||
| 
								 | 
							
								let iota n = forall [] cons 0 n identity
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* interval a b produces the list [a; a + 1; ...; b - 1] *)
							 | 
						||
| 
								 | 
							
								let interval a b = List.map ((+) a) (iota (b - a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(*
							 | 
						||
| 
								 | 
							
								 * freeze a function, i.e., compute it only once on demand, and
							 | 
						||
| 
								 | 
							
								 * cache it into an array.
							 | 
						||
| 
								 | 
							
								 *)
							 | 
						||
| 
								 | 
							
								let array n f =
							 | 
						||
| 
								 | 
							
								  let a = Array.init n (fun i -> lazy (f i))
							 | 
						||
| 
								 | 
							
								  in fun i -> Lazy.force a.(i)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let rec take n l =
							 | 
						||
| 
								 | 
							
								  match (n, l) with
							 | 
						||
| 
								 | 
							
								    (0, _) -> []
							 | 
						||
| 
								 | 
							
								  | (n, (a :: b)) -> a :: (take (n - 1) b)
							 | 
						||
| 
								 | 
							
								  | _ -> failwith "take"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let rec drop n l =
							 | 
						||
| 
								 | 
							
								  match (n, l) with
							 | 
						||
| 
								 | 
							
								    (0, _) -> l
							 | 
						||
| 
								 | 
							
								  | (n, (_ :: b)) -> drop (n - 1) b
							 | 
						||
| 
								 | 
							
								  | _ -> failwith "drop"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let either a b =
							 | 
						||
| 
								 | 
							
								  match a with
							 | 
						||
| 
								 | 
							
								    Some x -> x
							 | 
						||
| 
								 | 
							
								  | _ -> b
							 |