1224 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1224 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:26 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 25 -name n1_25 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 352 FP additions, 268 FP multiplications, | ||
|  |  * (or, 84 additions, 0 multiplications, 268 fused multiply/add), | ||
|  |  * 128 stack variables, 47 constants, and 100 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP803003575, +0.803003575438660414833440593570376004635464850); | ||
|  |      DK(KP554608978, +0.554608978404018097464974850792216217022558774); | ||
|  |      DK(KP248028675, +0.248028675328619457762448260696444630363259177); | ||
|  |      DK(KP726211448, +0.726211448929902658173535992263577167607493062); | ||
|  |      DK(KP525970792, +0.525970792408939708442463226536226366643874659); | ||
|  |      DK(KP992114701, +0.992114701314477831049793042785778521453036709); | ||
|  |      DK(KP851038619, +0.851038619207379630836264138867114231259902550); | ||
|  |      DK(KP912575812, +0.912575812670962425556968549836277086778922727); | ||
|  |      DK(KP912018591, +0.912018591466481957908415381764119056233607330); | ||
|  |      DK(KP943557151, +0.943557151597354104399655195398983005179443399); | ||
|  |      DK(KP614372930, +0.614372930789563808870829930444362096004872855); | ||
|  |      DK(KP621716863, +0.621716863012209892444754556304102309693593202); | ||
|  |      DK(KP994076283, +0.994076283785401014123185814696322018529298887); | ||
|  |      DK(KP734762448, +0.734762448793050413546343770063151342619912334); | ||
|  |      DK(KP126329378, +0.126329378446108174786050455341811215027378105); | ||
|  |      DK(KP772036680, +0.772036680810363904029489473607579825330539880); | ||
|  |      DK(KP827271945, +0.827271945972475634034355757144307982555673741); | ||
|  |      DK(KP860541664, +0.860541664367944677098261680920518816412804187); | ||
|  |      DK(KP949179823, +0.949179823508441261575555465843363271711583843); | ||
|  |      DK(KP557913902, +0.557913902031834264187699648465567037992437152); | ||
|  |      DK(KP249506682, +0.249506682107067890488084201715862638334226305); | ||
|  |      DK(KP681693190, +0.681693190061530575150324149145440022633095390); | ||
|  |      DK(KP560319534, +0.560319534973832390111614715371676131169633784); | ||
|  |      DK(KP998026728, +0.998026728428271561952336806863450553336905220); | ||
|  |      DK(KP906616052, +0.906616052148196230441134447086066874408359177); | ||
|  |      DK(KP968479752, +0.968479752739016373193524836781420152702090879); | ||
|  |      DK(KP470564281, +0.470564281212251493087595091036643380879947982); | ||
|  |      DK(KP845997307, +0.845997307939530944175097360758058292389769300); | ||
|  |      DK(KP062914667, +0.062914667253649757225485955897349402364686947); | ||
|  |      DK(KP833417178, +0.833417178328688677408962550243238843138996060); | ||
|  |      DK(KP921177326, +0.921177326965143320250447435415066029359282231); | ||
|  |      DK(KP541454447, +0.541454447536312777046285590082819509052033189); | ||
|  |      DK(KP242145790, +0.242145790282157779872542093866183953459003101); | ||
|  |      DK(KP683113946, +0.683113946453479238701949862233725244439656928); | ||
|  |      DK(KP559154169, +0.559154169276087864842202529084232643714075927); | ||
|  |      DK(KP968583161, +0.968583161128631119490168375464735813836012403); | ||
|  |      DK(KP904730450, +0.904730450839922351881287709692877908104763647); | ||
|  |      DK(KP831864738, +0.831864738706457140726048799369896829771167132); | ||
|  |      DK(KP939062505, +0.939062505817492352556001843133229685779824606); | ||
|  |      DK(KP549754652, +0.549754652192770074288023275540779861653779767); | ||
|  |      DK(KP871714437, +0.871714437527667770979999223229522602943903653); | ||
|  |      DK(KP634619297, +0.634619297544148100711287640319130485732531031); | ||
|  |      DK(KP256756360, +0.256756360367726783319498520922669048172391148); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(100, is), MAKE_VOLATILE_STRIDE(100, os)) { | ||
|  | 	       E T9, T4Q, T1U, T3b, T45, T1D, T46, T3e, T1R, T4P, Ti, Tr, Ts, TY, T17; | ||
|  | 	       E T1E, T22, T5f, T3z, T4z, T2o, T5b, T3C, T4s, T2h, T5c, T3D, T4p, T29, T5e; | ||
|  | 	       E T3A, T4w, TB, TK, TL, T1h, T1q, T1F, T2x, T57, T3v, T4a, T2T, T55, T3s; | ||
|  | 	       E T4k, T2M, T54, T3t, T4h, T2E, T58, T3w, T4d; | ||
|  | 	       { | ||
|  | 		    E T1, T4, T7, T8, T1T, T1S, T39, T3a; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    { | ||
|  | 			 E T2, T3, T5, T6; | ||
|  | 			 T2 = ri[WS(is, 5)]; | ||
|  | 			 T3 = ri[WS(is, 20)]; | ||
|  | 			 T4 = T2 + T3; | ||
|  | 			 T5 = ri[WS(is, 10)]; | ||
|  | 			 T6 = ri[WS(is, 15)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 T8 = T4 + T7; | ||
|  | 			 T1T = T5 - T6; | ||
|  | 			 T1S = T2 - T3; | ||
|  | 		    } | ||
|  | 		    T9 = T1 + T8; | ||
|  | 		    T4Q = FNMS(KP618033988, T1S, T1T); | ||
|  | 		    T1U = FMA(KP618033988, T1T, T1S); | ||
|  | 		    T39 = FNMS(KP250000000, T8, T1); | ||
|  | 		    T3a = T4 - T7; | ||
|  | 		    T3b = FMA(KP559016994, T3a, T39); | ||
|  | 		    T45 = FNMS(KP559016994, T3a, T39); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1v, T1y, T1B, T1C, T3d, T3c, T1P, T1Q; | ||
|  | 		    T1v = ii[0]; | ||
|  | 		    { | ||
|  | 			 E T1w, T1x, T1z, T1A; | ||
|  | 			 T1w = ii[WS(is, 5)]; | ||
|  | 			 T1x = ii[WS(is, 20)]; | ||
|  | 			 T1y = T1w + T1x; | ||
|  | 			 T1z = ii[WS(is, 10)]; | ||
|  | 			 T1A = ii[WS(is, 15)]; | ||
|  | 			 T1B = T1z + T1A; | ||
|  | 			 T1C = T1y + T1B; | ||
|  | 			 T3d = T1z - T1A; | ||
|  | 			 T3c = T1w - T1x; | ||
|  | 		    } | ||
|  | 		    T1D = T1v + T1C; | ||
|  | 		    T46 = FNMS(KP618033988, T3c, T3d); | ||
|  | 		    T3e = FMA(KP618033988, T3d, T3c); | ||
|  | 		    T1P = FNMS(KP250000000, T1C, T1v); | ||
|  | 		    T1Q = T1y - T1B; | ||
|  | 		    T1R = FMA(KP559016994, T1Q, T1P); | ||
|  | 		    T4P = FNMS(KP559016994, T1Q, T1P); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, TQ, Tj, TZ, Th, T24, T1Z, T20, TX, T27, T1X, T26, Tq, T2m, T2c; | ||
|  | 		    E T2l, T16, T2j, T2e, T2f; | ||
|  | 		    Ta = ri[WS(is, 1)]; | ||
|  | 		    TQ = ii[WS(is, 1)]; | ||
|  | 		    Tj = ri[WS(is, 4)]; | ||
|  | 		    TZ = ii[WS(is, 4)]; | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Td, Te, Tf, Tg; | ||
|  | 			 Tb = ri[WS(is, 6)]; | ||
|  | 			 Tc = ri[WS(is, 21)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 Te = ri[WS(is, 11)]; | ||
|  | 			 Tf = ri[WS(is, 16)]; | ||
|  | 			 Tg = Te + Tf; | ||
|  | 			 Th = Td + Tg; | ||
|  | 			 T24 = Td - Tg; | ||
|  | 			 T1Z = Tc - Tb; | ||
|  | 			 T20 = Tf - Te; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TR, TS, TT, TU, TV, TW; | ||
|  | 			 TR = ii[WS(is, 6)]; | ||
|  | 			 TS = ii[WS(is, 21)]; | ||
|  | 			 TT = TR + TS; | ||
|  | 			 TU = ii[WS(is, 11)]; | ||
|  | 			 TV = ii[WS(is, 16)]; | ||
|  | 			 TW = TU + TV; | ||
|  | 			 TX = TT + TW; | ||
|  | 			 T27 = TV - TU; | ||
|  | 			 T1X = TT - TW; | ||
|  | 			 T26 = TR - TS; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tk, Tl, Tm, Tn, To, Tp; | ||
|  | 			 Tk = ri[WS(is, 9)]; | ||
|  | 			 Tl = ri[WS(is, 24)]; | ||
|  | 			 Tm = Tk + Tl; | ||
|  | 			 Tn = ri[WS(is, 14)]; | ||
|  | 			 To = ri[WS(is, 19)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 Tq = Tm + Tp; | ||
|  | 			 T2m = To - Tn; | ||
|  | 			 T2c = Tm - Tp; | ||
|  | 			 T2l = Tl - Tk; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T10, T11, T12, T13, T14, T15; | ||
|  | 			 T10 = ii[WS(is, 9)]; | ||
|  | 			 T11 = ii[WS(is, 24)]; | ||
|  | 			 T12 = T10 + T11; | ||
|  | 			 T13 = ii[WS(is, 14)]; | ||
|  | 			 T14 = ii[WS(is, 19)]; | ||
|  | 			 T15 = T13 + T14; | ||
|  | 			 T16 = T12 + T15; | ||
|  | 			 T2j = T15 - T12; | ||
|  | 			 T2e = T11 - T10; | ||
|  | 			 T2f = T14 - T13; | ||
|  | 		    } | ||
|  | 		    Ti = Ta + Th; | ||
|  | 		    Tr = Tj + Tq; | ||
|  | 		    Ts = Ti + Tr; | ||
|  | 		    TY = TQ + TX; | ||
|  | 		    T17 = TZ + T16; | ||
|  | 		    T1E = TY + T17; | ||
|  | 		    { | ||
|  | 			 E T21, T4y, T1Y, T4x, T1W; | ||
|  | 			 T21 = FMA(KP618033988, T20, T1Z); | ||
|  | 			 T4y = FNMS(KP618033988, T1Z, T20); | ||
|  | 			 T1W = FNMS(KP250000000, TX, TQ); | ||
|  | 			 T1Y = FMA(KP559016994, T1X, T1W); | ||
|  | 			 T4x = FNMS(KP559016994, T1X, T1W); | ||
|  | 			 T22 = FMA(KP951056516, T21, T1Y); | ||
|  | 			 T5f = FNMS(KP951056516, T4y, T4x); | ||
|  | 			 T3z = FNMS(KP951056516, T21, T1Y); | ||
|  | 			 T4z = FMA(KP951056516, T4y, T4x); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2n, T4r, T2k, T4q, T2i; | ||
|  | 			 T2n = FMA(KP618033988, T2m, T2l); | ||
|  | 			 T4r = FNMS(KP618033988, T2l, T2m); | ||
|  | 			 T2i = FNMS(KP250000000, T16, TZ); | ||
|  | 			 T2k = FNMS(KP559016994, T2j, T2i); | ||
|  | 			 T4q = FMA(KP559016994, T2j, T2i); | ||
|  | 			 T2o = FMA(KP951056516, T2n, T2k); | ||
|  | 			 T5b = FNMS(KP951056516, T4r, T4q); | ||
|  | 			 T3C = FNMS(KP951056516, T2n, T2k); | ||
|  | 			 T4s = FMA(KP951056516, T4r, T4q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2g, T4o, T2d, T4n, T2b; | ||
|  | 			 T2g = FMA(KP618033988, T2f, T2e); | ||
|  | 			 T4o = FNMS(KP618033988, T2e, T2f); | ||
|  | 			 T2b = FMS(KP250000000, Tq, Tj); | ||
|  | 			 T2d = FNMS(KP559016994, T2c, T2b); | ||
|  | 			 T4n = FMA(KP559016994, T2c, T2b); | ||
|  | 			 T2h = FMA(KP951056516, T2g, T2d); | ||
|  | 			 T5c = FNMS(KP951056516, T4o, T4n); | ||
|  | 			 T3D = FNMS(KP951056516, T2g, T2d); | ||
|  | 			 T4p = FMA(KP951056516, T4o, T4n); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T28, T4v, T25, T4u, T23; | ||
|  | 			 T28 = FNMS(KP618033988, T27, T26); | ||
|  | 			 T4v = FMA(KP618033988, T26, T27); | ||
|  | 			 T23 = FNMS(KP250000000, Th, Ta); | ||
|  | 			 T25 = FMA(KP559016994, T24, T23); | ||
|  | 			 T4u = FNMS(KP559016994, T24, T23); | ||
|  | 			 T29 = FMA(KP951056516, T28, T25); | ||
|  | 			 T5e = FMA(KP951056516, T4v, T4u); | ||
|  | 			 T3A = FNMS(KP951056516, T28, T25); | ||
|  | 			 T4w = FNMS(KP951056516, T4v, T4u); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, T19, TC, T1i, TA, T2z, T2u, T2v, T1g, T2C, T2s, T2B, TJ, T2O, T2J; | ||
|  | 		    E T2K, T1p, T2R, T2H, T2Q; | ||
|  | 		    Tt = ri[WS(is, 2)]; | ||
|  | 		    T19 = ii[WS(is, 2)]; | ||
|  | 		    TC = ri[WS(is, 3)]; | ||
|  | 		    T1i = ii[WS(is, 3)]; | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, Tw, Tx, Ty, Tz; | ||
|  | 			 Tu = ri[WS(is, 7)]; | ||
|  | 			 Tv = ri[WS(is, 22)]; | ||
|  | 			 Tw = Tu + Tv; | ||
|  | 			 Tx = ri[WS(is, 12)]; | ||
|  | 			 Ty = ri[WS(is, 17)]; | ||
|  | 			 Tz = Tx + Ty; | ||
|  | 			 TA = Tw + Tz; | ||
|  | 			 T2z = Tz - Tw; | ||
|  | 			 T2u = Tv - Tu; | ||
|  | 			 T2v = Ty - Tx; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1a, T1b, T1c, T1d, T1e, T1f; | ||
|  | 			 T1a = ii[WS(is, 7)]; | ||
|  | 			 T1b = ii[WS(is, 22)]; | ||
|  | 			 T1c = T1a + T1b; | ||
|  | 			 T1d = ii[WS(is, 12)]; | ||
|  | 			 T1e = ii[WS(is, 17)]; | ||
|  | 			 T1f = T1d + T1e; | ||
|  | 			 T1g = T1c + T1f; | ||
|  | 			 T2C = T1d - T1e; | ||
|  | 			 T2s = T1f - T1c; | ||
|  | 			 T2B = T1b - T1a; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TD, TE, TF, TG, TH, TI; | ||
|  | 			 TD = ri[WS(is, 8)]; | ||
|  | 			 TE = ri[WS(is, 23)]; | ||
|  | 			 TF = TD + TE; | ||
|  | 			 TG = ri[WS(is, 13)]; | ||
|  | 			 TH = ri[WS(is, 18)]; | ||
|  | 			 TI = TG + TH; | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 T2O = TI - TF; | ||
|  | 			 T2J = TD - TE; | ||
|  | 			 T2K = TG - TH; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1j, T1k, T1l, T1m, T1n, T1o; | ||
|  | 			 T1j = ii[WS(is, 8)]; | ||
|  | 			 T1k = ii[WS(is, 23)]; | ||
|  | 			 T1l = T1j + T1k; | ||
|  | 			 T1m = ii[WS(is, 13)]; | ||
|  | 			 T1n = ii[WS(is, 18)]; | ||
|  | 			 T1o = T1m + T1n; | ||
|  | 			 T1p = T1l + T1o; | ||
|  | 			 T2R = T1n - T1m; | ||
|  | 			 T2H = T1o - T1l; | ||
|  | 			 T2Q = T1k - T1j; | ||
|  | 		    } | ||
|  | 		    TB = Tt + TA; | ||
|  | 		    TK = TC + TJ; | ||
|  | 		    TL = TB + TK; | ||
|  | 		    T1h = T19 + T1g; | ||
|  | 		    T1q = T1i + T1p; | ||
|  | 		    T1F = T1h + T1q; | ||
|  | 		    { | ||
|  | 			 E T2w, T49, T2t, T48, T2r; | ||
|  | 			 T2w = FMA(KP618033988, T2v, T2u); | ||
|  | 			 T49 = FNMS(KP618033988, T2u, T2v); | ||
|  | 			 T2r = FNMS(KP250000000, T1g, T19); | ||
|  | 			 T2t = FNMS(KP559016994, T2s, T2r); | ||
|  | 			 T48 = FMA(KP559016994, T2s, T2r); | ||
|  | 			 T2x = FMA(KP951056516, T2w, T2t); | ||
|  | 			 T57 = FNMS(KP951056516, T49, T48); | ||
|  | 			 T3v = FNMS(KP951056516, T2w, T2t); | ||
|  | 			 T4a = FMA(KP951056516, T49, T48); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2S, T4j, T2P, T4i, T2N; | ||
|  | 			 T2S = FMA(KP618033988, T2R, T2Q); | ||
|  | 			 T4j = FNMS(KP618033988, T2Q, T2R); | ||
|  | 			 T2N = FNMS(KP250000000, TJ, TC); | ||
|  | 			 T2P = FNMS(KP559016994, T2O, T2N); | ||
|  | 			 T4i = FMA(KP559016994, T2O, T2N); | ||
|  | 			 T2T = FNMS(KP951056516, T2S, T2P); | ||
|  | 			 T55 = FMA(KP951056516, T4j, T4i); | ||
|  | 			 T3s = FMA(KP951056516, T2S, T2P); | ||
|  | 			 T4k = FNMS(KP951056516, T4j, T4i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2L, T4g, T2I, T4f, T2G; | ||
|  | 			 T2L = FMA(KP618033988, T2K, T2J); | ||
|  | 			 T4g = FNMS(KP618033988, T2J, T2K); | ||
|  | 			 T2G = FNMS(KP250000000, T1p, T1i); | ||
|  | 			 T2I = FNMS(KP559016994, T2H, T2G); | ||
|  | 			 T4f = FMA(KP559016994, T2H, T2G); | ||
|  | 			 T2M = FNMS(KP951056516, T2L, T2I); | ||
|  | 			 T54 = FMA(KP951056516, T4g, T4f); | ||
|  | 			 T3t = FMA(KP951056516, T2L, T2I); | ||
|  | 			 T4h = FNMS(KP951056516, T4g, T4f); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2D, T4c, T2A, T4b, T2y; | ||
|  | 			 T2D = FNMS(KP618033988, T2C, T2B); | ||
|  | 			 T4c = FMA(KP618033988, T2B, T2C); | ||
|  | 			 T2y = FNMS(KP250000000, TA, Tt); | ||
|  | 			 T2A = FNMS(KP559016994, T2z, T2y); | ||
|  | 			 T4b = FMA(KP559016994, T2z, T2y); | ||
|  | 			 T2E = FNMS(KP951056516, T2D, T2A); | ||
|  | 			 T58 = FNMS(KP951056516, T4c, T4b); | ||
|  | 			 T3w = FMA(KP951056516, T2D, T2A); | ||
|  | 			 T4d = FMA(KP951056516, T4c, T4b); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TO, TM, TN, T1s, T1u, T18, T1r, T1t, TP; | ||
|  | 		    TO = Ts - TL; | ||
|  | 		    TM = Ts + TL; | ||
|  | 		    TN = FNMS(KP250000000, TM, T9); | ||
|  | 		    T18 = TY - T17; | ||
|  | 		    T1r = T1h - T1q; | ||
|  | 		    T1s = FMA(KP618033988, T1r, T18); | ||
|  | 		    T1u = FNMS(KP618033988, T18, T1r); | ||
|  | 		    ro[0] = T9 + TM; | ||
|  | 		    T1t = FNMS(KP559016994, TO, TN); | ||
|  | 		    ro[WS(os, 10)] = FNMS(KP951056516, T1u, T1t); | ||
|  | 		    ro[WS(os, 15)] = FMA(KP951056516, T1u, T1t); | ||
|  | 		    TP = FMA(KP559016994, TO, TN); | ||
|  | 		    ro[WS(os, 20)] = FNMS(KP951056516, T1s, TP); | ||
|  | 		    ro[WS(os, 5)] = FMA(KP951056516, T1s, TP); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1I, T1G, T1H, T1M, T1O, T1K, T1L, T1N, T1J; | ||
|  | 		    T1I = T1E - T1F; | ||
|  | 		    T1G = T1E + T1F; | ||
|  | 		    T1H = FNMS(KP250000000, T1G, T1D); | ||
|  | 		    T1K = Ti - Tr; | ||
|  | 		    T1L = TB - TK; | ||
|  | 		    T1M = FMA(KP618033988, T1L, T1K); | ||
|  | 		    T1O = FNMS(KP618033988, T1K, T1L); | ||
|  | 		    io[0] = T1D + T1G; | ||
|  | 		    T1N = FNMS(KP559016994, T1I, T1H); | ||
|  | 		    io[WS(os, 10)] = FMA(KP951056516, T1O, T1N); | ||
|  | 		    io[WS(os, 15)] = FNMS(KP951056516, T1O, T1N); | ||
|  | 		    T1J = FMA(KP559016994, T1I, T1H); | ||
|  | 		    io[WS(os, 5)] = FNMS(KP951056516, T1M, T1J); | ||
|  | 		    io[WS(os, 20)] = FMA(KP951056516, T1M, T1J); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1V, T3f, T2W, T3n, T2Y, T3m, T32, T3k, T35, T3i; | ||
|  | 		    T1V = FNMS(KP951056516, T1U, T1R); | ||
|  | 		    T3f = FMA(KP951056516, T3e, T3b); | ||
|  | 		    { | ||
|  | 			 E T2a, T2p, T2q, T2F, T2U, T2V; | ||
|  | 			 T2a = FNMS(KP256756360, T29, T22); | ||
|  | 			 T2p = FMA(KP634619297, T2o, T2h); | ||
|  | 			 T2q = FMA(KP871714437, T2p, T2a); | ||
|  | 			 T2F = FNMS(KP549754652, T2E, T2x); | ||
|  | 			 T2U = FNMS(KP939062505, T2T, T2M); | ||
|  | 			 T2V = FMA(KP831864738, T2U, T2F); | ||
|  | 			 T2W = FMA(KP904730450, T2V, T2q); | ||
|  | 			 T3n = FNMS(KP831864738, T2U, T2F); | ||
|  | 			 T2Y = FNMS(KP904730450, T2V, T2q); | ||
|  | 			 T3m = FNMS(KP871714437, T2p, T2a); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T30, T31, T3g, T33, T34, T3h; | ||
|  | 			 T30 = FMA(KP256756360, T22, T29); | ||
|  | 			 T31 = FNMS(KP634619297, T2h, T2o); | ||
|  | 			 T3g = FMA(KP871714437, T31, T30); | ||
|  | 			 T33 = FMA(KP549754652, T2x, T2E); | ||
|  | 			 T34 = FMA(KP939062505, T2M, T2T); | ||
|  | 			 T3h = FMA(KP831864738, T34, T33); | ||
|  | 			 T32 = FNMS(KP871714437, T31, T30); | ||
|  | 			 T3k = FNMS(KP904730450, T3h, T3g); | ||
|  | 			 T35 = FNMS(KP831864738, T34, T33); | ||
|  | 			 T3i = FMA(KP904730450, T3h, T3g); | ||
|  | 		    } | ||
|  | 		    io[WS(os, 1)] = FMA(KP968583161, T2W, T1V); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP968583161, T3i, T3f); | ||
|  | 		    { | ||
|  | 			 E T36, T38, T2Z, T37, T2X; | ||
|  | 			 T36 = FMA(KP559154169, T35, T32); | ||
|  | 			 T38 = FNMS(KP683113946, T32, T35); | ||
|  | 			 T2X = FNMS(KP242145790, T2W, T1V); | ||
|  | 			 T2Z = FMA(KP541454447, T2Y, T2X); | ||
|  | 			 T37 = FNMS(KP541454447, T2Y, T2X); | ||
|  | 			 io[WS(os, 6)] = FNMS(KP921177326, T36, T2Z); | ||
|  | 			 io[WS(os, 11)] = FMA(KP833417178, T38, T37); | ||
|  | 			 io[WS(os, 21)] = FMA(KP921177326, T36, T2Z); | ||
|  | 			 io[WS(os, 16)] = FNMS(KP833417178, T38, T37); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3o, T3q, T3l, T3p, T3j; | ||
|  | 			 T3o = FMA(KP559154169, T3n, T3m); | ||
|  | 			 T3q = FNMS(KP683113946, T3m, T3n); | ||
|  | 			 T3j = FNMS(KP242145790, T3i, T3f); | ||
|  | 			 T3l = FMA(KP541454447, T3k, T3j); | ||
|  | 			 T3p = FNMS(KP541454447, T3k, T3j); | ||
|  | 			 ro[WS(os, 6)] = FMA(KP921177326, T3o, T3l); | ||
|  | 			 ro[WS(os, 16)] = FMA(KP833417178, T3q, T3p); | ||
|  | 			 ro[WS(os, 21)] = FNMS(KP921177326, T3o, T3l); | ||
|  | 			 ro[WS(os, 11)] = FNMS(KP833417178, T3q, T3p); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T53, T5j, T5i, T5A, T5u, T5v, T5q, T5D, T5s, T5C; | ||
|  | 		    T53 = FNMS(KP951056516, T46, T45); | ||
|  | 		    T5j = FMA(KP951056516, T4Q, T4P); | ||
|  | 		    { | ||
|  | 			 E T56, T59, T5a, T5d, T5g, T5h; | ||
|  | 			 T56 = FMA(KP062914667, T55, T54); | ||
|  | 			 T59 = FMA(KP634619297, T58, T57); | ||
|  | 			 T5a = FMA(KP845997307, T59, T56); | ||
|  | 			 T5d = FMA(KP470564281, T5c, T5b); | ||
|  | 			 T5g = FMA(KP549754652, T5f, T5e); | ||
|  | 			 T5h = FMA(KP968479752, T5g, T5d); | ||
|  | 			 T5i = FMA(KP906616052, T5h, T5a); | ||
|  | 			 T5A = FNMS(KP906616052, T5h, T5a); | ||
|  | 			 T5u = FNMS(KP845997307, T59, T56); | ||
|  | 			 T5v = FNMS(KP968479752, T5g, T5d); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5k, T5l, T5m, T5n, T5o, T5p; | ||
|  | 			 T5k = FNMS(KP062914667, T54, T55); | ||
|  | 			 T5l = FNMS(KP634619297, T57, T58); | ||
|  | 			 T5m = FMA(KP845997307, T5l, T5k); | ||
|  | 			 T5n = FNMS(KP470564281, T5b, T5c); | ||
|  | 			 T5o = FNMS(KP549754652, T5e, T5f); | ||
|  | 			 T5p = FMA(KP968479752, T5o, T5n); | ||
|  | 			 T5q = FNMS(KP906616052, T5p, T5m); | ||
|  | 			 T5D = FNMS(KP845997307, T5l, T5k); | ||
|  | 			 T5s = FMA(KP906616052, T5p, T5m); | ||
|  | 			 T5C = FNMS(KP968479752, T5o, T5n); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 2)] = FMA(KP998026728, T5i, T53); | ||
|  | 		    io[WS(os, 2)] = FNMS(KP998026728, T5q, T5j); | ||
|  | 		    { | ||
|  | 			 E T5w, T5y, T5t, T5x, T5r; | ||
|  | 			 T5w = FNMS(KP560319534, T5v, T5u); | ||
|  | 			 T5y = FMA(KP681693190, T5u, T5v); | ||
|  | 			 T5r = FMA(KP249506682, T5q, T5j); | ||
|  | 			 T5t = FNMS(KP557913902, T5s, T5r); | ||
|  | 			 T5x = FMA(KP557913902, T5s, T5r); | ||
|  | 			 io[WS(os, 12)] = FNMS(KP949179823, T5w, T5t); | ||
|  | 			 io[WS(os, 22)] = FNMS(KP860541664, T5y, T5x); | ||
|  | 			 io[WS(os, 17)] = FMA(KP949179823, T5w, T5t); | ||
|  | 			 io[WS(os, 7)] = FMA(KP860541664, T5y, T5x); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5E, T5G, T5B, T5F, T5z; | ||
|  | 			 T5E = FNMS(KP681693190, T5D, T5C); | ||
|  | 			 T5G = FMA(KP560319534, T5C, T5D); | ||
|  | 			 T5z = FNMS(KP249506682, T5i, T53); | ||
|  | 			 T5B = FNMS(KP557913902, T5A, T5z); | ||
|  | 			 T5F = FMA(KP557913902, T5A, T5z); | ||
|  | 			 ro[WS(os, 22)] = FMA(KP860541664, T5E, T5B); | ||
|  | 			 ro[WS(os, 17)] = FMA(KP949179823, T5G, T5F); | ||
|  | 			 ro[WS(os, 7)] = FNMS(KP860541664, T5E, T5B); | ||
|  | 			 ro[WS(os, 12)] = FNMS(KP949179823, T5G, T5F); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T47, T4R, T4C, T4Z, T4E, T4Y, T4I, T4W, T4L, T4U; | ||
|  | 		    T47 = FMA(KP951056516, T46, T45); | ||
|  | 		    T4R = FNMS(KP951056516, T4Q, T4P); | ||
|  | 		    { | ||
|  | 			 E T4e, T4l, T4m, T4t, T4A, T4B; | ||
|  | 			 T4e = FMA(KP062914667, T4d, T4a); | ||
|  | 			 T4l = FNMS(KP827271945, T4k, T4h); | ||
|  | 			 T4m = FMA(KP772036680, T4l, T4e); | ||
|  | 			 T4t = FMA(KP126329378, T4s, T4p); | ||
|  | 			 T4A = FMA(KP939062505, T4z, T4w); | ||
|  | 			 T4B = FMA(KP734762448, T4A, T4t); | ||
|  | 			 T4C = FMA(KP994076283, T4B, T4m); | ||
|  | 			 T4Z = FNMS(KP734762448, T4A, T4t); | ||
|  | 			 T4E = FNMS(KP994076283, T4B, T4m); | ||
|  | 			 T4Y = FNMS(KP772036680, T4l, T4e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4G, T4H, T4T, T4J, T4K, T4S; | ||
|  | 			 T4G = FNMS(KP126329378, T4p, T4s); | ||
|  | 			 T4H = FNMS(KP939062505, T4w, T4z); | ||
|  | 			 T4T = FNMS(KP734762448, T4H, T4G); | ||
|  | 			 T4J = FNMS(KP062914667, T4a, T4d); | ||
|  | 			 T4K = FMA(KP827271945, T4h, T4k); | ||
|  | 			 T4S = FMA(KP772036680, T4K, T4J); | ||
|  | 			 T4I = FMA(KP734762448, T4H, T4G); | ||
|  | 			 T4W = FNMS(KP994076283, T4T, T4S); | ||
|  | 			 T4L = FNMS(KP772036680, T4K, T4J); | ||
|  | 			 T4U = FMA(KP994076283, T4T, T4S); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 3)] = FMA(KP998026728, T4C, T47); | ||
|  | 		    io[WS(os, 3)] = FNMS(KP998026728, T4U, T4R); | ||
|  | 		    { | ||
|  | 			 E T4M, T4O, T4F, T4N, T4D; | ||
|  | 			 T4M = FNMS(KP621716863, T4L, T4I); | ||
|  | 			 T4O = FMA(KP614372930, T4I, T4L); | ||
|  | 			 T4D = FNMS(KP249506682, T4C, T47); | ||
|  | 			 T4F = FNMS(KP557913902, T4E, T4D); | ||
|  | 			 T4N = FMA(KP557913902, T4E, T4D); | ||
|  | 			 ro[WS(os, 23)] = FNMS(KP943557151, T4M, T4F); | ||
|  | 			 ro[WS(os, 13)] = FMA(KP949179823, T4O, T4N); | ||
|  | 			 ro[WS(os, 8)] = FMA(KP943557151, T4M, T4F); | ||
|  | 			 ro[WS(os, 18)] = FNMS(KP949179823, T4O, T4N); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T50, T52, T4X, T51, T4V; | ||
|  | 			 T50 = FMA(KP614372930, T4Z, T4Y); | ||
|  | 			 T52 = FNMS(KP621716863, T4Y, T4Z); | ||
|  | 			 T4V = FMA(KP249506682, T4U, T4R); | ||
|  | 			 T4X = FNMS(KP557913902, T4W, T4V); | ||
|  | 			 T51 = FMA(KP557913902, T4W, T4V); | ||
|  | 			 io[WS(os, 13)] = FMA(KP949179823, T50, T4X); | ||
|  | 			 io[WS(os, 23)] = FNMS(KP943557151, T52, T51); | ||
|  | 			 io[WS(os, 18)] = FNMS(KP949179823, T50, T4X); | ||
|  | 			 io[WS(os, 8)] = FMA(KP943557151, T52, T51); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3r, T3H, T3G, T3Y, T3S, T3T, T3O, T41, T3Q, T40; | ||
|  | 		    T3r = FNMS(KP951056516, T3e, T3b); | ||
|  | 		    T3H = FMA(KP951056516, T1U, T1R); | ||
|  | 		    { | ||
|  | 			 E T3u, T3x, T3y, T3B, T3E, T3F; | ||
|  | 			 T3u = FNMS(KP126329378, T3t, T3s); | ||
|  | 			 T3x = FNMS(KP470564281, T3w, T3v); | ||
|  | 			 T3y = FNMS(KP912018591, T3x, T3u); | ||
|  | 			 T3B = FMA(KP634619297, T3A, T3z); | ||
|  | 			 T3E = FNMS(KP827271945, T3D, T3C); | ||
|  | 			 T3F = FNMS(KP912575812, T3E, T3B); | ||
|  | 			 T3G = FNMS(KP851038619, T3F, T3y); | ||
|  | 			 T3Y = FMA(KP851038619, T3F, T3y); | ||
|  | 			 T3S = FMA(KP912018591, T3x, T3u); | ||
|  | 			 T3T = FMA(KP912575812, T3E, T3B); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3I, T3J, T3K, T3L, T3M, T3N; | ||
|  | 			 T3I = FMA(KP126329378, T3s, T3t); | ||
|  | 			 T3J = FMA(KP470564281, T3v, T3w); | ||
|  | 			 T3K = FMA(KP912018591, T3J, T3I); | ||
|  | 			 T3L = FNMS(KP634619297, T3z, T3A); | ||
|  | 			 T3M = FMA(KP827271945, T3C, T3D); | ||
|  | 			 T3N = FMA(KP912575812, T3M, T3L); | ||
|  | 			 T3O = FMA(KP851038619, T3N, T3K); | ||
|  | 			 T41 = FNMS(KP912018591, T3J, T3I); | ||
|  | 			 T3Q = FNMS(KP851038619, T3N, T3K); | ||
|  | 			 T40 = FNMS(KP912575812, T3M, T3L); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 4)] = FNMS(KP992114701, T3G, T3r); | ||
|  | 		    io[WS(os, 4)] = FNMS(KP992114701, T3O, T3H); | ||
|  | 		    { | ||
|  | 			 E T3U, T3W, T3R, T3V, T3P; | ||
|  | 			 T3U = FNMS(KP525970792, T3T, T3S); | ||
|  | 			 T3W = FMA(KP726211448, T3S, T3T); | ||
|  | 			 T3P = FMA(KP248028675, T3O, T3H); | ||
|  | 			 T3R = FNMS(KP554608978, T3Q, T3P); | ||
|  | 			 T3V = FMA(KP554608978, T3Q, T3P); | ||
|  | 			 io[WS(os, 14)] = FMA(KP943557151, T3U, T3R); | ||
|  | 			 io[WS(os, 24)] = FMA(KP803003575, T3W, T3V); | ||
|  | 			 io[WS(os, 19)] = FNMS(KP943557151, T3U, T3R); | ||
|  | 			 io[WS(os, 9)] = FNMS(KP803003575, T3W, T3V); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T42, T44, T3Z, T43, T3X; | ||
|  | 			 T42 = FNMS(KP726211448, T41, T40); | ||
|  | 			 T44 = FMA(KP525970792, T40, T41); | ||
|  | 			 T3X = FMA(KP248028675, T3G, T3r); | ||
|  | 			 T3Z = FMA(KP554608978, T3Y, T3X); | ||
|  | 			 T43 = FNMS(KP554608978, T3Y, T3X); | ||
|  | 			 ro[WS(os, 9)] = FNMS(KP803003575, T42, T3Z); | ||
|  | 			 ro[WS(os, 19)] = FMA(KP943557151, T44, T43); | ||
|  | 			 ro[WS(os, 24)] = FMA(KP803003575, T42, T3Z); | ||
|  | 			 ro[WS(os, 14)] = FNMS(KP943557151, T44, T43); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 25, "n1_25", { 84, 0, 268, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_25) (planner *p) { X(kdft_register) (p, n1_25, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 25 -name n1_25 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 352 FP additions, 184 FP multiplications, | ||
|  |  * (or, 260 additions, 92 multiplications, 92 fused multiply/add), | ||
|  |  * 101 stack variables, 20 constants, and 100 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP425779291, +0.425779291565072648862502445744251703979973042); | ||
|  |      DK(KP904827052, +0.904827052466019527713668647932697593970413911); | ||
|  |      DK(KP637423989, +0.637423989748689710176712811676016195434917298); | ||
|  |      DK(KP770513242, +0.770513242775789230803009636396177847271667672); | ||
|  |      DK(KP998026728, +0.998026728428271561952336806863450553336905220); | ||
|  |      DK(KP062790519, +0.062790519529313376076178224565631133122484832); | ||
|  |      DK(KP992114701, +0.992114701314477831049793042785778521453036709); | ||
|  |      DK(KP125333233, +0.125333233564304245373118759816508793942918247); | ||
|  |      DK(KP684547105, +0.684547105928688673732283357621209269889519233); | ||
|  |      DK(KP728968627, +0.728968627421411523146730319055259111372571664); | ||
|  |      DK(KP481753674, +0.481753674101715274987191502872129653528542010); | ||
|  |      DK(KP876306680, +0.876306680043863587308115903922062583399064238); | ||
|  |      DK(KP844327925, +0.844327925502015078548558063966681505381659241); | ||
|  |      DK(KP535826794, +0.535826794978996618271308767867639978063575346); | ||
|  |      DK(KP248689887, +0.248689887164854788242283746006447968417567406); | ||
|  |      DK(KP968583161, +0.968583161128631119490168375464735813836012403); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(100, is), MAKE_VOLATILE_STRIDE(100, os)) { | ||
|  | 	       E T9, T4u, T2T, TP, T3H, TW, T5y, T3I, T2Q, T4v, Ti, Tr, Ts, T5m, T5n; | ||
|  | 	       E T5v, T18, T4G, T34, T3M, T1G, T4J, T38, T3T, T1v, T4K, T37, T3W, T1j, T4H; | ||
|  | 	       E T35, T3P, TB, TK, TL, T5p, T5q, T5w, T1T, T4N, T3c, T41, T2r, T4Q, T3e; | ||
|  | 	       E T4b, T2g, T4R, T3f, T48, T24, T4O, T3b, T44; | ||
|  | 	       { | ||
|  | 		    E T1, T4, T7, T8, T2S, T2R, TN, TO; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    { | ||
|  | 			 E T2, T3, T5, T6; | ||
|  | 			 T2 = ri[WS(is, 5)]; | ||
|  | 			 T3 = ri[WS(is, 20)]; | ||
|  | 			 T4 = T2 + T3; | ||
|  | 			 T5 = ri[WS(is, 10)]; | ||
|  | 			 T6 = ri[WS(is, 15)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 T8 = T4 + T7; | ||
|  | 			 T2S = T5 - T6; | ||
|  | 			 T2R = T2 - T3; | ||
|  | 		    } | ||
|  | 		    T9 = T1 + T8; | ||
|  | 		    T4u = FNMS(KP587785252, T2R, KP951056516 * T2S); | ||
|  | 		    T2T = FMA(KP951056516, T2R, KP587785252 * T2S); | ||
|  | 		    TN = KP559016994 * (T4 - T7); | ||
|  | 		    TO = FNMS(KP250000000, T8, T1); | ||
|  | 		    TP = TN + TO; | ||
|  | 		    T3H = TO - TN; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2N, T2K, T2L, TS, T2O, TV, T2M, T2P; | ||
|  | 		    T2N = ii[0]; | ||
|  | 		    { | ||
|  | 			 E TQ, TR, TT, TU; | ||
|  | 			 TQ = ii[WS(is, 5)]; | ||
|  | 			 TR = ii[WS(is, 20)]; | ||
|  | 			 T2K = TQ + TR; | ||
|  | 			 TT = ii[WS(is, 10)]; | ||
|  | 			 TU = ii[WS(is, 15)]; | ||
|  | 			 T2L = TT + TU; | ||
|  | 			 TS = TQ - TR; | ||
|  | 			 T2O = T2K + T2L; | ||
|  | 			 TV = TT - TU; | ||
|  | 		    } | ||
|  | 		    TW = FMA(KP951056516, TS, KP587785252 * TV); | ||
|  | 		    T5y = T2N + T2O; | ||
|  | 		    T3I = FNMS(KP587785252, TS, KP951056516 * TV); | ||
|  | 		    T2M = KP559016994 * (T2K - T2L); | ||
|  | 		    T2P = FNMS(KP250000000, T2O, T2N); | ||
|  | 		    T2Q = T2M + T2P; | ||
|  | 		    T4v = T2P - T2M; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, T1c, Tj, T1z, Th, T1h, TY, T1g, T13, T1d, T16, T1b, Tq, T1E, T1l; | ||
|  | 		    E T1D, T1q, T1A, T1t, T1y; | ||
|  | 		    Ta = ri[WS(is, 1)]; | ||
|  | 		    T1c = ii[WS(is, 1)]; | ||
|  | 		    Tj = ri[WS(is, 4)]; | ||
|  | 		    T1z = ii[WS(is, 4)]; | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Td, Te, Tf, Tg; | ||
|  | 			 Tb = ri[WS(is, 6)]; | ||
|  | 			 Tc = ri[WS(is, 21)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 Te = ri[WS(is, 11)]; | ||
|  | 			 Tf = ri[WS(is, 16)]; | ||
|  | 			 Tg = Te + Tf; | ||
|  | 			 Th = Td + Tg; | ||
|  | 			 T1h = Te - Tf; | ||
|  | 			 TY = KP559016994 * (Td - Tg); | ||
|  | 			 T1g = Tb - Tc; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T11, T12, T19, T14, T15, T1a; | ||
|  | 			 T11 = ii[WS(is, 6)]; | ||
|  | 			 T12 = ii[WS(is, 21)]; | ||
|  | 			 T19 = T11 + T12; | ||
|  | 			 T14 = ii[WS(is, 11)]; | ||
|  | 			 T15 = ii[WS(is, 16)]; | ||
|  | 			 T1a = T14 + T15; | ||
|  | 			 T13 = T11 - T12; | ||
|  | 			 T1d = T19 + T1a; | ||
|  | 			 T16 = T14 - T15; | ||
|  | 			 T1b = KP559016994 * (T19 - T1a); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tk, Tl, Tm, Tn, To, Tp; | ||
|  | 			 Tk = ri[WS(is, 9)]; | ||
|  | 			 Tl = ri[WS(is, 24)]; | ||
|  | 			 Tm = Tk + Tl; | ||
|  | 			 Tn = ri[WS(is, 14)]; | ||
|  | 			 To = ri[WS(is, 19)]; | ||
|  | 			 Tp = Tn + To; | ||
|  | 			 Tq = Tm + Tp; | ||
|  | 			 T1E = Tn - To; | ||
|  | 			 T1l = KP559016994 * (Tm - Tp); | ||
|  | 			 T1D = Tk - Tl; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1o, T1p, T1w, T1r, T1s, T1x; | ||
|  | 			 T1o = ii[WS(is, 9)]; | ||
|  | 			 T1p = ii[WS(is, 24)]; | ||
|  | 			 T1w = T1o + T1p; | ||
|  | 			 T1r = ii[WS(is, 14)]; | ||
|  | 			 T1s = ii[WS(is, 19)]; | ||
|  | 			 T1x = T1r + T1s; | ||
|  | 			 T1q = T1o - T1p; | ||
|  | 			 T1A = T1w + T1x; | ||
|  | 			 T1t = T1r - T1s; | ||
|  | 			 T1y = KP559016994 * (T1w - T1x); | ||
|  | 		    } | ||
|  | 		    Ti = Ta + Th; | ||
|  | 		    Tr = Tj + Tq; | ||
|  | 		    Ts = Ti + Tr; | ||
|  | 		    T5m = T1c + T1d; | ||
|  | 		    T5n = T1z + T1A; | ||
|  | 		    T5v = T5m + T5n; | ||
|  | 		    { | ||
|  | 			 E T17, T3L, T10, T3K, TZ; | ||
|  | 			 T17 = FMA(KP951056516, T13, KP587785252 * T16); | ||
|  | 			 T3L = FNMS(KP587785252, T13, KP951056516 * T16); | ||
|  | 			 TZ = FNMS(KP250000000, Th, Ta); | ||
|  | 			 T10 = TY + TZ; | ||
|  | 			 T3K = TZ - TY; | ||
|  | 			 T18 = T10 + T17; | ||
|  | 			 T4G = T3K + T3L; | ||
|  | 			 T34 = T10 - T17; | ||
|  | 			 T3M = T3K - T3L; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1F, T3R, T1C, T3S, T1B; | ||
|  | 			 T1F = FMA(KP951056516, T1D, KP587785252 * T1E); | ||
|  | 			 T3R = FNMS(KP587785252, T1D, KP951056516 * T1E); | ||
|  | 			 T1B = FNMS(KP250000000, T1A, T1z); | ||
|  | 			 T1C = T1y + T1B; | ||
|  | 			 T3S = T1B - T1y; | ||
|  | 			 T1G = T1C - T1F; | ||
|  | 			 T4J = T3S - T3R; | ||
|  | 			 T38 = T1F + T1C; | ||
|  | 			 T3T = T3R + T3S; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1u, T3V, T1n, T3U, T1m; | ||
|  | 			 T1u = FMA(KP951056516, T1q, KP587785252 * T1t); | ||
|  | 			 T3V = FNMS(KP587785252, T1q, KP951056516 * T1t); | ||
|  | 			 T1m = FNMS(KP250000000, Tq, Tj); | ||
|  | 			 T1n = T1l + T1m; | ||
|  | 			 T3U = T1m - T1l; | ||
|  | 			 T1v = T1n + T1u; | ||
|  | 			 T4K = T3U + T3V; | ||
|  | 			 T37 = T1n - T1u; | ||
|  | 			 T3W = T3U - T3V; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1i, T3N, T1f, T3O, T1e; | ||
|  | 			 T1i = FMA(KP951056516, T1g, KP587785252 * T1h); | ||
|  | 			 T3N = FNMS(KP587785252, T1g, KP951056516 * T1h); | ||
|  | 			 T1e = FNMS(KP250000000, T1d, T1c); | ||
|  | 			 T1f = T1b + T1e; | ||
|  | 			 T3O = T1e - T1b; | ||
|  | 			 T1j = T1f - T1i; | ||
|  | 			 T4H = T3O - T3N; | ||
|  | 			 T35 = T1i + T1f; | ||
|  | 			 T3P = T3N + T3O; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tt, T1X, TC, T2k, TA, T22, T1J, T21, T1O, T1Y, T1R, T1W, TJ, T2p, T26; | ||
|  | 		    E T2o, T2b, T2l, T2e, T2j; | ||
|  | 		    Tt = ri[WS(is, 2)]; | ||
|  | 		    T1X = ii[WS(is, 2)]; | ||
|  | 		    TC = ri[WS(is, 3)]; | ||
|  | 		    T2k = ii[WS(is, 3)]; | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, Tw, Tx, Ty, Tz; | ||
|  | 			 Tu = ri[WS(is, 7)]; | ||
|  | 			 Tv = ri[WS(is, 22)]; | ||
|  | 			 Tw = Tu + Tv; | ||
|  | 			 Tx = ri[WS(is, 12)]; | ||
|  | 			 Ty = ri[WS(is, 17)]; | ||
|  | 			 Tz = Tx + Ty; | ||
|  | 			 TA = Tw + Tz; | ||
|  | 			 T22 = Tx - Ty; | ||
|  | 			 T1J = KP559016994 * (Tw - Tz); | ||
|  | 			 T21 = Tu - Tv; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1M, T1N, T1U, T1P, T1Q, T1V; | ||
|  | 			 T1M = ii[WS(is, 7)]; | ||
|  | 			 T1N = ii[WS(is, 22)]; | ||
|  | 			 T1U = T1M + T1N; | ||
|  | 			 T1P = ii[WS(is, 12)]; | ||
|  | 			 T1Q = ii[WS(is, 17)]; | ||
|  | 			 T1V = T1P + T1Q; | ||
|  | 			 T1O = T1M - T1N; | ||
|  | 			 T1Y = T1U + T1V; | ||
|  | 			 T1R = T1P - T1Q; | ||
|  | 			 T1W = KP559016994 * (T1U - T1V); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TD, TE, TF, TG, TH, TI; | ||
|  | 			 TD = ri[WS(is, 8)]; | ||
|  | 			 TE = ri[WS(is, 23)]; | ||
|  | 			 TF = TD + TE; | ||
|  | 			 TG = ri[WS(is, 13)]; | ||
|  | 			 TH = ri[WS(is, 18)]; | ||
|  | 			 TI = TG + TH; | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 T2p = TG - TH; | ||
|  | 			 T26 = KP559016994 * (TF - TI); | ||
|  | 			 T2o = TD - TE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T29, T2a, T2h, T2c, T2d, T2i; | ||
|  | 			 T29 = ii[WS(is, 8)]; | ||
|  | 			 T2a = ii[WS(is, 23)]; | ||
|  | 			 T2h = T29 + T2a; | ||
|  | 			 T2c = ii[WS(is, 13)]; | ||
|  | 			 T2d = ii[WS(is, 18)]; | ||
|  | 			 T2i = T2c + T2d; | ||
|  | 			 T2b = T29 - T2a; | ||
|  | 			 T2l = T2h + T2i; | ||
|  | 			 T2e = T2c - T2d; | ||
|  | 			 T2j = KP559016994 * (T2h - T2i); | ||
|  | 		    } | ||
|  | 		    TB = Tt + TA; | ||
|  | 		    TK = TC + TJ; | ||
|  | 		    TL = TB + TK; | ||
|  | 		    T5p = T1X + T1Y; | ||
|  | 		    T5q = T2k + T2l; | ||
|  | 		    T5w = T5p + T5q; | ||
|  | 		    { | ||
|  | 			 E T1S, T40, T1L, T3Z, T1K; | ||
|  | 			 T1S = FMA(KP951056516, T1O, KP587785252 * T1R); | ||
|  | 			 T40 = FNMS(KP587785252, T1O, KP951056516 * T1R); | ||
|  | 			 T1K = FNMS(KP250000000, TA, Tt); | ||
|  | 			 T1L = T1J + T1K; | ||
|  | 			 T3Z = T1K - T1J; | ||
|  | 			 T1T = T1L + T1S; | ||
|  | 			 T4N = T3Z + T40; | ||
|  | 			 T3c = T1L - T1S; | ||
|  | 			 T41 = T3Z - T40; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2q, T49, T2n, T4a, T2m; | ||
|  | 			 T2q = FMA(KP951056516, T2o, KP587785252 * T2p); | ||
|  | 			 T49 = FNMS(KP587785252, T2o, KP951056516 * T2p); | ||
|  | 			 T2m = FNMS(KP250000000, T2l, T2k); | ||
|  | 			 T2n = T2j + T2m; | ||
|  | 			 T4a = T2m - T2j; | ||
|  | 			 T2r = T2n - T2q; | ||
|  | 			 T4Q = T4a - T49; | ||
|  | 			 T3e = T2q + T2n; | ||
|  | 			 T4b = T49 + T4a; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2f, T47, T28, T46, T27; | ||
|  | 			 T2f = FMA(KP951056516, T2b, KP587785252 * T2e); | ||
|  | 			 T47 = FNMS(KP587785252, T2b, KP951056516 * T2e); | ||
|  | 			 T27 = FNMS(KP250000000, TJ, TC); | ||
|  | 			 T28 = T26 + T27; | ||
|  | 			 T46 = T27 - T26; | ||
|  | 			 T2g = T28 + T2f; | ||
|  | 			 T4R = T46 + T47; | ||
|  | 			 T3f = T28 - T2f; | ||
|  | 			 T48 = T46 - T47; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T23, T42, T20, T43, T1Z; | ||
|  | 			 T23 = FMA(KP951056516, T21, KP587785252 * T22); | ||
|  | 			 T42 = FNMS(KP587785252, T21, KP951056516 * T22); | ||
|  | 			 T1Z = FNMS(KP250000000, T1Y, T1X); | ||
|  | 			 T20 = T1W + T1Z; | ||
|  | 			 T43 = T1Z - T1W; | ||
|  | 			 T24 = T20 - T23; | ||
|  | 			 T4O = T43 - T42; | ||
|  | 			 T3b = T23 + T20; | ||
|  | 			 T44 = T42 + T43; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5j, TM, T5k, T5s, T5u, T5o, T5r, T5t, T5l; | ||
|  | 		    T5j = KP559016994 * (Ts - TL); | ||
|  | 		    TM = Ts + TL; | ||
|  | 		    T5k = FNMS(KP250000000, TM, T9); | ||
|  | 		    T5o = T5m - T5n; | ||
|  | 		    T5r = T5p - T5q; | ||
|  | 		    T5s = FMA(KP951056516, T5o, KP587785252 * T5r); | ||
|  | 		    T5u = FNMS(KP587785252, T5o, KP951056516 * T5r); | ||
|  | 		    ro[0] = T9 + TM; | ||
|  | 		    T5t = T5k - T5j; | ||
|  | 		    ro[WS(os, 10)] = T5t - T5u; | ||
|  | 		    ro[WS(os, 15)] = T5t + T5u; | ||
|  | 		    T5l = T5j + T5k; | ||
|  | 		    ro[WS(os, 20)] = T5l - T5s; | ||
|  | 		    ro[WS(os, 5)] = T5l + T5s; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5x, T5z, T5A, T5E, T5F, T5C, T5D, T5G, T5B; | ||
|  | 		    T5x = KP559016994 * (T5v - T5w); | ||
|  | 		    T5z = T5v + T5w; | ||
|  | 		    T5A = FNMS(KP250000000, T5z, T5y); | ||
|  | 		    T5C = Ti - Tr; | ||
|  | 		    T5D = TB - TK; | ||
|  | 		    T5E = FMA(KP951056516, T5C, KP587785252 * T5D); | ||
|  | 		    T5F = FNMS(KP587785252, T5C, KP951056516 * T5D); | ||
|  | 		    io[0] = T5y + T5z; | ||
|  | 		    T5G = T5A - T5x; | ||
|  | 		    io[WS(os, 10)] = T5F + T5G; | ||
|  | 		    io[WS(os, 15)] = T5G - T5F; | ||
|  | 		    T5B = T5x + T5A; | ||
|  | 		    io[WS(os, 5)] = T5B - T5E; | ||
|  | 		    io[WS(os, 20)] = T5E + T5B; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TX, T2U, T2u, T2Z, T2v, T2Y, T2A, T2V, T2D, T2J; | ||
|  | 		    TX = TP + TW; | ||
|  | 		    T2U = T2Q - T2T; | ||
|  | 		    { | ||
|  | 			 E T1k, T1H, T1I, T25, T2s, T2t; | ||
|  | 			 T1k = FMA(KP968583161, T18, KP248689887 * T1j); | ||
|  | 			 T1H = FMA(KP535826794, T1v, KP844327925 * T1G); | ||
|  | 			 T1I = T1k + T1H; | ||
|  | 			 T25 = FMA(KP876306680, T1T, KP481753674 * T24); | ||
|  | 			 T2s = FMA(KP728968627, T2g, KP684547105 * T2r); | ||
|  | 			 T2t = T25 + T2s; | ||
|  | 			 T2u = T1I + T2t; | ||
|  | 			 T2Z = T25 - T2s; | ||
|  | 			 T2v = KP559016994 * (T1I - T2t); | ||
|  | 			 T2Y = T1k - T1H; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2y, T2z, T2H, T2B, T2C, T2I; | ||
|  | 			 T2y = FNMS(KP248689887, T18, KP968583161 * T1j); | ||
|  | 			 T2z = FNMS(KP844327925, T1v, KP535826794 * T1G); | ||
|  | 			 T2H = T2y + T2z; | ||
|  | 			 T2B = FNMS(KP481753674, T1T, KP876306680 * T24); | ||
|  | 			 T2C = FNMS(KP684547105, T2g, KP728968627 * T2r); | ||
|  | 			 T2I = T2B + T2C; | ||
|  | 			 T2A = T2y - T2z; | ||
|  | 			 T2V = T2H + T2I; | ||
|  | 			 T2D = T2B - T2C; | ||
|  | 			 T2J = KP559016994 * (T2H - T2I); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 1)] = TX + T2u; | ||
|  | 		    io[WS(os, 1)] = T2U + T2V; | ||
|  | 		    { | ||
|  | 			 E T2E, T2G, T2x, T2F, T2w; | ||
|  | 			 T2E = FMA(KP951056516, T2A, KP587785252 * T2D); | ||
|  | 			 T2G = FNMS(KP587785252, T2A, KP951056516 * T2D); | ||
|  | 			 T2w = FNMS(KP250000000, T2u, TX); | ||
|  | 			 T2x = T2v + T2w; | ||
|  | 			 T2F = T2w - T2v; | ||
|  | 			 ro[WS(os, 21)] = T2x - T2E; | ||
|  | 			 ro[WS(os, 16)] = T2F + T2G; | ||
|  | 			 ro[WS(os, 6)] = T2x + T2E; | ||
|  | 			 ro[WS(os, 11)] = T2F - T2G; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T30, T31, T2X, T32, T2W; | ||
|  | 			 T30 = FMA(KP951056516, T2Y, KP587785252 * T2Z); | ||
|  | 			 T31 = FNMS(KP587785252, T2Y, KP951056516 * T2Z); | ||
|  | 			 T2W = FNMS(KP250000000, T2V, T2U); | ||
|  | 			 T2X = T2J + T2W; | ||
|  | 			 T32 = T2W - T2J; | ||
|  | 			 io[WS(os, 6)] = T2X - T30; | ||
|  | 			 io[WS(os, 16)] = T32 - T31; | ||
|  | 			 io[WS(os, 21)] = T30 + T2X; | ||
|  | 			 io[WS(os, 11)] = T31 + T32; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4F, T52, T4U, T5b, T56, T57, T51, T5f, T53, T5e; | ||
|  | 		    T4F = T3H + T3I; | ||
|  | 		    T52 = T4v - T4u; | ||
|  | 		    { | ||
|  | 			 E T4I, T4L, T4M, T4P, T4S, T4T; | ||
|  | 			 T4I = FMA(KP728968627, T4G, KP684547105 * T4H); | ||
|  | 			 T4L = FNMS(KP992114701, T4K, KP125333233 * T4J); | ||
|  | 			 T4M = T4I + T4L; | ||
|  | 			 T4P = FMA(KP062790519, T4N, KP998026728 * T4O); | ||
|  | 			 T4S = FNMS(KP637423989, T4R, KP770513242 * T4Q); | ||
|  | 			 T4T = T4P + T4S; | ||
|  | 			 T4U = T4M + T4T; | ||
|  | 			 T5b = KP559016994 * (T4M - T4T); | ||
|  | 			 T56 = T4I - T4L; | ||
|  | 			 T57 = T4P - T4S; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4V, T4W, T4X, T4Y, T4Z, T50; | ||
|  | 			 T4V = FNMS(KP684547105, T4G, KP728968627 * T4H); | ||
|  | 			 T4W = FMA(KP125333233, T4K, KP992114701 * T4J); | ||
|  | 			 T4X = T4V - T4W; | ||
|  | 			 T4Y = FNMS(KP998026728, T4N, KP062790519 * T4O); | ||
|  | 			 T4Z = FMA(KP770513242, T4R, KP637423989 * T4Q); | ||
|  | 			 T50 = T4Y - T4Z; | ||
|  | 			 T51 = KP559016994 * (T4X - T50); | ||
|  | 			 T5f = T4Y + T4Z; | ||
|  | 			 T53 = T4X + T50; | ||
|  | 			 T5e = T4V + T4W; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 3)] = T4F + T4U; | ||
|  | 		    io[WS(os, 3)] = T52 + T53; | ||
|  | 		    { | ||
|  | 			 E T58, T59, T55, T5a, T54; | ||
|  | 			 T58 = FMA(KP951056516, T56, KP587785252 * T57); | ||
|  | 			 T59 = FNMS(KP587785252, T56, KP951056516 * T57); | ||
|  | 			 T54 = FNMS(KP250000000, T53, T52); | ||
|  | 			 T55 = T51 + T54; | ||
|  | 			 T5a = T54 - T51; | ||
|  | 			 io[WS(os, 8)] = T55 - T58; | ||
|  | 			 io[WS(os, 18)] = T5a - T59; | ||
|  | 			 io[WS(os, 23)] = T58 + T55; | ||
|  | 			 io[WS(os, 13)] = T59 + T5a; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5g, T5i, T5d, T5h, T5c; | ||
|  | 			 T5g = FMA(KP951056516, T5e, KP587785252 * T5f); | ||
|  | 			 T5i = FNMS(KP587785252, T5e, KP951056516 * T5f); | ||
|  | 			 T5c = FNMS(KP250000000, T4U, T4F); | ||
|  | 			 T5d = T5b + T5c; | ||
|  | 			 T5h = T5c - T5b; | ||
|  | 			 ro[WS(os, 23)] = T5d - T5g; | ||
|  | 			 ro[WS(os, 18)] = T5h + T5i; | ||
|  | 			 ro[WS(os, 8)] = T5d + T5g; | ||
|  | 			 ro[WS(os, 13)] = T5h - T5i; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3J, T4w, T4e, T4B, T4f, T4A, T4k, T4x, T4n, T4t; | ||
|  | 		    T3J = T3H - T3I; | ||
|  | 		    T4w = T4u + T4v; | ||
|  | 		    { | ||
|  | 			 E T3Q, T3X, T3Y, T45, T4c, T4d; | ||
|  | 			 T3Q = FMA(KP876306680, T3M, KP481753674 * T3P); | ||
|  | 			 T3X = FNMS(KP425779291, T3W, KP904827052 * T3T); | ||
|  | 			 T3Y = T3Q + T3X; | ||
|  | 			 T45 = FMA(KP535826794, T41, KP844327925 * T44); | ||
|  | 			 T4c = FMA(KP062790519, T48, KP998026728 * T4b); | ||
|  | 			 T4d = T45 + T4c; | ||
|  | 			 T4e = T3Y + T4d; | ||
|  | 			 T4B = T45 - T4c; | ||
|  | 			 T4f = KP559016994 * (T3Y - T4d); | ||
|  | 			 T4A = T3Q - T3X; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4i, T4j, T4r, T4l, T4m, T4s; | ||
|  | 			 T4i = FNMS(KP481753674, T3M, KP876306680 * T3P); | ||
|  | 			 T4j = FMA(KP904827052, T3W, KP425779291 * T3T); | ||
|  | 			 T4r = T4i - T4j; | ||
|  | 			 T4l = FNMS(KP844327925, T41, KP535826794 * T44); | ||
|  | 			 T4m = FNMS(KP998026728, T48, KP062790519 * T4b); | ||
|  | 			 T4s = T4l + T4m; | ||
|  | 			 T4k = T4i + T4j; | ||
|  | 			 T4x = T4r + T4s; | ||
|  | 			 T4n = T4l - T4m; | ||
|  | 			 T4t = KP559016994 * (T4r - T4s); | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 2)] = T3J + T4e; | ||
|  | 		    io[WS(os, 2)] = T4w + T4x; | ||
|  | 		    { | ||
|  | 			 E T4o, T4q, T4h, T4p, T4g; | ||
|  | 			 T4o = FMA(KP951056516, T4k, KP587785252 * T4n); | ||
|  | 			 T4q = FNMS(KP587785252, T4k, KP951056516 * T4n); | ||
|  | 			 T4g = FNMS(KP250000000, T4e, T3J); | ||
|  | 			 T4h = T4f + T4g; | ||
|  | 			 T4p = T4g - T4f; | ||
|  | 			 ro[WS(os, 22)] = T4h - T4o; | ||
|  | 			 ro[WS(os, 17)] = T4p + T4q; | ||
|  | 			 ro[WS(os, 7)] = T4h + T4o; | ||
|  | 			 ro[WS(os, 12)] = T4p - T4q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4C, T4D, T4z, T4E, T4y; | ||
|  | 			 T4C = FMA(KP951056516, T4A, KP587785252 * T4B); | ||
|  | 			 T4D = FNMS(KP587785252, T4A, KP951056516 * T4B); | ||
|  | 			 T4y = FNMS(KP250000000, T4x, T4w); | ||
|  | 			 T4z = T4t + T4y; | ||
|  | 			 T4E = T4y - T4t; | ||
|  | 			 io[WS(os, 7)] = T4z - T4C; | ||
|  | 			 io[WS(os, 17)] = T4E - T4D; | ||
|  | 			 io[WS(os, 22)] = T4C + T4z; | ||
|  | 			 io[WS(os, 12)] = T4D + T4E; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T33, T3j, T3i, T3z, T3r, T3s, T3q, T3D, T3v, T3C; | ||
|  | 		    T33 = TP - TW; | ||
|  | 		    T3j = T2T + T2Q; | ||
|  | 		    { | ||
|  | 			 E T36, T39, T3a, T3d, T3g, T3h; | ||
|  | 			 T36 = FMA(KP535826794, T34, KP844327925 * T35); | ||
|  | 			 T39 = FMA(KP637423989, T37, KP770513242 * T38); | ||
|  | 			 T3a = T36 - T39; | ||
|  | 			 T3d = FNMS(KP425779291, T3c, KP904827052 * T3b); | ||
|  | 			 T3g = FNMS(KP992114701, T3f, KP125333233 * T3e); | ||
|  | 			 T3h = T3d + T3g; | ||
|  | 			 T3i = T3a + T3h; | ||
|  | 			 T3z = KP559016994 * (T3a - T3h); | ||
|  | 			 T3r = T3d - T3g; | ||
|  | 			 T3s = T36 + T39; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3k, T3l, T3m, T3n, T3o, T3p; | ||
|  | 			 T3k = FNMS(KP844327925, T34, KP535826794 * T35); | ||
|  | 			 T3l = FNMS(KP637423989, T38, KP770513242 * T37); | ||
|  | 			 T3m = T3k + T3l; | ||
|  | 			 T3n = FMA(KP904827052, T3c, KP425779291 * T3b); | ||
|  | 			 T3o = FMA(KP125333233, T3f, KP992114701 * T3e); | ||
|  | 			 T3p = T3n + T3o; | ||
|  | 			 T3q = T3m - T3p; | ||
|  | 			 T3D = T3o - T3n; | ||
|  | 			 T3v = KP559016994 * (T3m + T3p); | ||
|  | 			 T3C = T3k - T3l; | ||
|  | 		    } | ||
|  | 		    ro[WS(os, 4)] = T33 + T3i; | ||
|  | 		    io[WS(os, 4)] = T3j + T3q; | ||
|  | 		    { | ||
|  | 			 E T3t, T3y, T3w, T3x, T3u; | ||
|  | 			 T3t = FNMS(KP587785252, T3s, KP951056516 * T3r); | ||
|  | 			 T3y = FMA(KP951056516, T3s, KP587785252 * T3r); | ||
|  | 			 T3u = FNMS(KP250000000, T3q, T3j); | ||
|  | 			 T3w = T3u - T3v; | ||
|  | 			 T3x = T3u + T3v; | ||
|  | 			 io[WS(os, 14)] = T3t + T3w; | ||
|  | 			 io[WS(os, 24)] = T3y + T3x; | ||
|  | 			 io[WS(os, 19)] = T3w - T3t; | ||
|  | 			 io[WS(os, 9)] = T3x - T3y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3E, T3G, T3B, T3F, T3A; | ||
|  | 			 T3E = FMA(KP951056516, T3C, KP587785252 * T3D); | ||
|  | 			 T3G = FNMS(KP587785252, T3C, KP951056516 * T3D); | ||
|  | 			 T3A = FNMS(KP250000000, T3i, T33); | ||
|  | 			 T3B = T3z + T3A; | ||
|  | 			 T3F = T3A - T3z; | ||
|  | 			 ro[WS(os, 24)] = T3B - T3E; | ||
|  | 			 ro[WS(os, 19)] = T3F + T3G; | ||
|  | 			 ro[WS(os, 9)] = T3B + T3E; | ||
|  | 			 ro[WS(os, 14)] = T3F - T3G; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 25, "n1_25", { 260, 92, 92, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_25) (planner *p) { X(kdft_register) (p, n1_25, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |