514 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			514 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:24 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 148 FP additions, 84 FP multiplications, | ||
|  |  * (or, 64 additions, 0 multiplications, 84 fused multiply/add), | ||
|  |  * 67 stack variables, 6 constants, and 56 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP801937735, +0.801937735804838252472204639014890102331838324); | ||
|  |      DK(KP554958132, +0.554958132087371191422194871006410481067288862); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP692021471, +0.692021471630095869627814897002069140197260599); | ||
|  |      DK(KP356895867, +0.356895867892209443894399510021300583399127187); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) { | ||
|  | 	       E T3, Tp, T1b, T1x, T1i, T1L, T1M, T1j, T1k, T1K, Ta, To, Th, Tz, T14; | ||
|  | 	       E TZ, Ts, Ty, Tv, T1Z, T2c, T27, TI, T23, T24, TP, TW, T22, T1c, T1e; | ||
|  | 	       E T1d, T1f, T1s, T1n, T1A, T1G, T1D, T1H, T1U, T1P; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T19, T1a; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T2 = ri[WS(is, 7)]; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    Tp = T1 + T2; | ||
|  | 		    T19 = ii[0]; | ||
|  | 		    T1a = ii[WS(is, 7)]; | ||
|  | 		    T1b = T19 - T1a; | ||
|  | 		    T1x = T19 + T1a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Tq, T9, Tr, Tn, Tx, Tk, Tw, Tg, Tu, Td, Tt; | ||
|  | 		    { | ||
|  | 			 E T4, T5, Ti, Tj; | ||
|  | 			 T4 = ri[WS(is, 2)]; | ||
|  | 			 T5 = ri[WS(is, 9)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 Tq = T4 + T5; | ||
|  | 			 { | ||
|  | 			      E T7, T8, Tl, Tm; | ||
|  | 			      T7 = ri[WS(is, 12)]; | ||
|  | 			      T8 = ri[WS(is, 5)]; | ||
|  | 			      T9 = T7 - T8; | ||
|  | 			      Tr = T7 + T8; | ||
|  | 			      Tl = ri[WS(is, 8)]; | ||
|  | 			      Tm = ri[WS(is, 1)]; | ||
|  | 			      Tn = Tl - Tm; | ||
|  | 			      Tx = Tl + Tm; | ||
|  | 			 } | ||
|  | 			 Ti = ri[WS(is, 6)]; | ||
|  | 			 Tj = ri[WS(is, 13)]; | ||
|  | 			 Tk = Ti - Tj; | ||
|  | 			 Tw = Ti + Tj; | ||
|  | 			 { | ||
|  | 			      E Te, Tf, Tb, Tc; | ||
|  | 			      Te = ri[WS(is, 10)]; | ||
|  | 			      Tf = ri[WS(is, 3)]; | ||
|  | 			      Tg = Te - Tf; | ||
|  | 			      Tu = Te + Tf; | ||
|  | 			      Tb = ri[WS(is, 4)]; | ||
|  | 			      Tc = ri[WS(is, 11)]; | ||
|  | 			      Td = Tb - Tc; | ||
|  | 			      Tt = Tb + Tc; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    T1i = Tn - Tk; | ||
|  | 		    T1L = Tt - Tu; | ||
|  | 		    T1M = Tr - Tq; | ||
|  | 		    T1j = Tg - Td; | ||
|  | 		    T1k = T9 - T6; | ||
|  | 		    T1K = Tw - Tx; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    To = Tk + Tn; | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    Tz = FNMS(KP356895867, Th, Ta); | ||
|  | 		    T14 = FNMS(KP356895867, To, Th); | ||
|  | 		    TZ = FNMS(KP356895867, Ta, To); | ||
|  | 		    Ts = Tq + Tr; | ||
|  | 		    Ty = Tw + Tx; | ||
|  | 		    Tv = Tt + Tu; | ||
|  | 		    T1Z = FNMS(KP356895867, Ts, Ty); | ||
|  | 		    T2c = FNMS(KP356895867, Ty, Tv); | ||
|  | 		    T27 = FNMS(KP356895867, Tv, Ts); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TE, T1B, TH, T1C, TV, T1F, TS, T1E, TO, T1z, TL, T1y; | ||
|  | 		    { | ||
|  | 			 E TC, TD, TQ, TR; | ||
|  | 			 TC = ii[WS(is, 4)]; | ||
|  | 			 TD = ii[WS(is, 11)]; | ||
|  | 			 TE = TC - TD; | ||
|  | 			 T1B = TC + TD; | ||
|  | 			 { | ||
|  | 			      E TF, TG, TT, TU; | ||
|  | 			      TF = ii[WS(is, 10)]; | ||
|  | 			      TG = ii[WS(is, 3)]; | ||
|  | 			      TH = TF - TG; | ||
|  | 			      T1C = TF + TG; | ||
|  | 			      TT = ii[WS(is, 8)]; | ||
|  | 			      TU = ii[WS(is, 1)]; | ||
|  | 			      TV = TT - TU; | ||
|  | 			      T1F = TT + TU; | ||
|  | 			 } | ||
|  | 			 TQ = ii[WS(is, 6)]; | ||
|  | 			 TR = ii[WS(is, 13)]; | ||
|  | 			 TS = TQ - TR; | ||
|  | 			 T1E = TQ + TR; | ||
|  | 			 { | ||
|  | 			      E TM, TN, TJ, TK; | ||
|  | 			      TM = ii[WS(is, 12)]; | ||
|  | 			      TN = ii[WS(is, 5)]; | ||
|  | 			      TO = TM - TN; | ||
|  | 			      T1z = TM + TN; | ||
|  | 			      TJ = ii[WS(is, 2)]; | ||
|  | 			      TK = ii[WS(is, 9)]; | ||
|  | 			      TL = TJ - TK; | ||
|  | 			      T1y = TJ + TK; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    TI = TE - TH; | ||
|  | 		    T23 = T1F - T1E; | ||
|  | 		    T24 = T1C - T1B; | ||
|  | 		    TP = TL - TO; | ||
|  | 		    TW = TS - TV; | ||
|  | 		    T22 = T1y - T1z; | ||
|  | 		    T1c = TL + TO; | ||
|  | 		    T1e = TS + TV; | ||
|  | 		    T1d = TE + TH; | ||
|  | 		    T1f = FNMS(KP356895867, T1e, T1d); | ||
|  | 		    T1s = FNMS(KP356895867, T1d, T1c); | ||
|  | 		    T1n = FNMS(KP356895867, T1c, T1e); | ||
|  | 		    T1A = T1y + T1z; | ||
|  | 		    T1G = T1E + T1F; | ||
|  | 		    T1D = T1B + T1C; | ||
|  | 		    T1H = FNMS(KP356895867, T1G, T1D); | ||
|  | 		    T1U = FNMS(KP356895867, T1D, T1A); | ||
|  | 		    T1P = FNMS(KP356895867, T1A, T1G); | ||
|  | 	       } | ||
|  | 	       ro[WS(os, 7)] = T3 + Ta + Th + To; | ||
|  | 	       io[WS(os, 7)] = T1b + T1c + T1d + T1e; | ||
|  | 	       ro[0] = Tp + Ts + Tv + Ty; | ||
|  | 	       io[0] = T1x + T1A + T1D + T1G; | ||
|  | 	       { | ||
|  | 		    E TB, TY, TA, TX; | ||
|  | 		    TA = FNMS(KP692021471, Tz, To); | ||
|  | 		    TB = FNMS(KP900968867, TA, T3); | ||
|  | 		    TX = FMA(KP554958132, TW, TP); | ||
|  | 		    TY = FMA(KP801937735, TX, TI); | ||
|  | 		    ro[WS(os, 13)] = FNMS(KP974927912, TY, TB); | ||
|  | 		    ro[WS(os, 1)] = FMA(KP974927912, TY, TB); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1u, T1w, T1t, T1v; | ||
|  | 		    T1t = FNMS(KP692021471, T1s, T1e); | ||
|  | 		    T1u = FNMS(KP900968867, T1t, T1b); | ||
|  | 		    T1v = FMA(KP554958132, T1i, T1k); | ||
|  | 		    T1w = FMA(KP801937735, T1v, T1j); | ||
|  | 		    io[WS(os, 1)] = FMA(KP974927912, T1w, T1u); | ||
|  | 		    io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, T13, T10, T12; | ||
|  | 		    T10 = FNMS(KP692021471, TZ, Th); | ||
|  | 		    T11 = FNMS(KP900968867, T10, T3); | ||
|  | 		    T12 = FMA(KP554958132, TI, TW); | ||
|  | 		    T13 = FNMS(KP801937735, T12, TP); | ||
|  | 		    ro[WS(os, 5)] = FNMS(KP974927912, T13, T11); | ||
|  | 		    ro[WS(os, 9)] = FMA(KP974927912, T13, T11); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1p, T1r, T1o, T1q; | ||
|  | 		    T1o = FNMS(KP692021471, T1n, T1d); | ||
|  | 		    T1p = FNMS(KP900968867, T1o, T1b); | ||
|  | 		    T1q = FMA(KP554958132, T1j, T1i); | ||
|  | 		    T1r = FNMS(KP801937735, T1q, T1k); | ||
|  | 		    io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p); | ||
|  | 		    io[WS(os, 9)] = FMA(KP974927912, T1r, T1p); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T16, T18, T15, T17; | ||
|  | 		    T15 = FNMS(KP692021471, T14, Ta); | ||
|  | 		    T16 = FNMS(KP900968867, T15, T3); | ||
|  | 		    T17 = FNMS(KP554958132, TP, TI); | ||
|  | 		    T18 = FNMS(KP801937735, T17, TW); | ||
|  | 		    ro[WS(os, 11)] = FNMS(KP974927912, T18, T16); | ||
|  | 		    ro[WS(os, 3)] = FMA(KP974927912, T18, T16); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1h, T1m, T1g, T1l; | ||
|  | 		    T1g = FNMS(KP692021471, T1f, T1c); | ||
|  | 		    T1h = FNMS(KP900968867, T1g, T1b); | ||
|  | 		    T1l = FNMS(KP554958132, T1k, T1j); | ||
|  | 		    T1m = FNMS(KP801937735, T1l, T1i); | ||
|  | 		    io[WS(os, 3)] = FMA(KP974927912, T1m, T1h); | ||
|  | 		    io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1J, T1O, T1I, T1N; | ||
|  | 		    T1I = FNMS(KP692021471, T1H, T1A); | ||
|  | 		    T1J = FNMS(KP900968867, T1I, T1x); | ||
|  | 		    T1N = FMA(KP554958132, T1M, T1L); | ||
|  | 		    T1O = FNMS(KP801937735, T1N, T1K); | ||
|  | 		    io[WS(os, 4)] = FMA(KP974927912, T1O, T1J); | ||
|  | 		    io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2e, T2g, T2d, T2f; | ||
|  | 		    T2d = FNMS(KP692021471, T2c, Ts); | ||
|  | 		    T2e = FNMS(KP900968867, T2d, Tp); | ||
|  | 		    T2f = FMA(KP554958132, T22, T24); | ||
|  | 		    T2g = FNMS(KP801937735, T2f, T23); | ||
|  | 		    ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e); | ||
|  | 		    ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1R, T1T, T1Q, T1S; | ||
|  | 		    T1Q = FNMS(KP692021471, T1P, T1D); | ||
|  | 		    T1R = FNMS(KP900968867, T1Q, T1x); | ||
|  | 		    T1S = FMA(KP554958132, T1L, T1K); | ||
|  | 		    T1T = FMA(KP801937735, T1S, T1M); | ||
|  | 		    io[WS(os, 2)] = FMA(KP974927912, T1T, T1R); | ||
|  | 		    io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T21, T26, T20, T25; | ||
|  | 		    T20 = FNMS(KP692021471, T1Z, Tv); | ||
|  | 		    T21 = FNMS(KP900968867, T20, Tp); | ||
|  | 		    T25 = FMA(KP554958132, T24, T23); | ||
|  | 		    T26 = FMA(KP801937735, T25, T22); | ||
|  | 		    ro[WS(os, 12)] = FNMS(KP974927912, T26, T21); | ||
|  | 		    ro[WS(os, 2)] = FMA(KP974927912, T26, T21); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1W, T1Y, T1V, T1X; | ||
|  | 		    T1V = FNMS(KP692021471, T1U, T1G); | ||
|  | 		    T1W = FNMS(KP900968867, T1V, T1x); | ||
|  | 		    T1X = FNMS(KP554958132, T1K, T1M); | ||
|  | 		    T1Y = FNMS(KP801937735, T1X, T1L); | ||
|  | 		    io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W); | ||
|  | 		    io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T29, T2b, T28, T2a; | ||
|  | 		    T28 = FNMS(KP692021471, T27, Ty); | ||
|  | 		    T29 = FNMS(KP900968867, T28, Tp); | ||
|  | 		    T2a = FNMS(KP554958132, T23, T22); | ||
|  | 		    T2b = FNMS(KP801937735, T2a, T24); | ||
|  | 		    ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29); | ||
|  | 		    ro[WS(os, 6)] = FMA(KP974927912, T2b, T29); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 14, "n1_14", { 64, 0, 84, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 148 FP additions, 72 FP multiplications, | ||
|  |  * (or, 100 additions, 24 multiplications, 48 fused multiply/add), | ||
|  |  * 43 stack variables, 6 constants, and 56 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/n.h"
 | ||
|  | 
 | ||
|  | static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP222520933, +0.222520933956314404288902564496794759466355569); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP623489801, +0.623489801858733530525004884004239810632274731); | ||
|  |      DK(KP433883739, +0.433883739117558120475768332848358754609990728); | ||
|  |      DK(KP781831482, +0.781831482468029808708444526674057750232334519); | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) { | ||
|  | 	       E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv; | ||
|  | 	       E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l; | ||
|  | 	       { | ||
|  | 		    E T1, T2, T14, T15; | ||
|  | 		    T1 = ri[0]; | ||
|  | 		    T2 = ri[WS(is, 7)]; | ||
|  | 		    T3 = T1 - T2; | ||
|  | 		    Tp = T1 + T2; | ||
|  | 		    T14 = ii[0]; | ||
|  | 		    T15 = ii[WS(is, 7)]; | ||
|  | 		    T16 = T14 - T15; | ||
|  | 		    T1f = T14 + T15; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Tq, T9, Tr; | ||
|  | 		    { | ||
|  | 			 E T4, T5, T7, T8; | ||
|  | 			 T4 = ri[WS(is, 2)]; | ||
|  | 			 T5 = ri[WS(is, 9)]; | ||
|  | 			 T6 = T4 - T5; | ||
|  | 			 Tq = T4 + T5; | ||
|  | 			 T7 = ri[WS(is, 12)]; | ||
|  | 			 T8 = ri[WS(is, 5)]; | ||
|  | 			 T9 = T7 - T8; | ||
|  | 			 Tr = T7 + T8; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    T1q = Tr - Tq; | ||
|  | 		    Ts = Tq + Tr; | ||
|  | 		    T10 = T9 - T6; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TC, T1g, TF, T1h; | ||
|  | 		    { | ||
|  | 			 E TA, TB, TD, TE; | ||
|  | 			 TA = ii[WS(is, 2)]; | ||
|  | 			 TB = ii[WS(is, 9)]; | ||
|  | 			 TC = TA - TB; | ||
|  | 			 T1g = TA + TB; | ||
|  | 			 TD = ii[WS(is, 12)]; | ||
|  | 			 TE = ii[WS(is, 5)]; | ||
|  | 			 TF = TD - TE; | ||
|  | 			 T1h = TD + TE; | ||
|  | 		    } | ||
|  | 		    TG = TC - TF; | ||
|  | 		    T1z = T1g - T1h; | ||
|  | 		    T19 = TC + TF; | ||
|  | 		    T1i = T1g + T1h; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Td, Tt, Tg, Tu; | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Te, Tf; | ||
|  | 			 Tb = ri[WS(is, 4)]; | ||
|  | 			 Tc = ri[WS(is, 11)]; | ||
|  | 			 Td = Tb - Tc; | ||
|  | 			 Tt = Tb + Tc; | ||
|  | 			 Te = ri[WS(is, 10)]; | ||
|  | 			 Tf = ri[WS(is, 3)]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 Tu = Te + Tf; | ||
|  | 		    } | ||
|  | 		    Th = Td + Tg; | ||
|  | 		    T1s = Tt - Tu; | ||
|  | 		    Tv = Tt + Tu; | ||
|  | 		    T12 = Tg - Td; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TQ, T1m, TT, T1n; | ||
|  | 		    { | ||
|  | 			 E TO, TP, TR, TS; | ||
|  | 			 TO = ii[WS(is, 4)]; | ||
|  | 			 TP = ii[WS(is, 11)]; | ||
|  | 			 TQ = TO - TP; | ||
|  | 			 T1m = TO + TP; | ||
|  | 			 TR = ii[WS(is, 10)]; | ||
|  | 			 TS = ii[WS(is, 3)]; | ||
|  | 			 TT = TR - TS; | ||
|  | 			 T1n = TR + TS; | ||
|  | 		    } | ||
|  | 		    TU = TQ - TT; | ||
|  | 		    T1B = T1n - T1m; | ||
|  | 		    T17 = TQ + TT; | ||
|  | 		    T1o = T1m + T1n; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tk, Tw, Tn, Tx; | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, Tl, Tm; | ||
|  | 			 Ti = ri[WS(is, 6)]; | ||
|  | 			 Tj = ri[WS(is, 13)]; | ||
|  | 			 Tk = Ti - Tj; | ||
|  | 			 Tw = Ti + Tj; | ||
|  | 			 Tl = ri[WS(is, 8)]; | ||
|  | 			 Tm = ri[WS(is, 1)]; | ||
|  | 			 Tn = Tl - Tm; | ||
|  | 			 Tx = Tl + Tm; | ||
|  | 		    } | ||
|  | 		    To = Tk + Tn; | ||
|  | 		    T1r = Tw - Tx; | ||
|  | 		    Ty = Tw + Tx; | ||
|  | 		    T11 = Tn - Tk; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TJ, T1j, TM, T1k; | ||
|  | 		    { | ||
|  | 			 E TH, TI, TK, TL; | ||
|  | 			 TH = ii[WS(is, 6)]; | ||
|  | 			 TI = ii[WS(is, 13)]; | ||
|  | 			 TJ = TH - TI; | ||
|  | 			 T1j = TH + TI; | ||
|  | 			 TK = ii[WS(is, 8)]; | ||
|  | 			 TL = ii[WS(is, 1)]; | ||
|  | 			 TM = TK - TL; | ||
|  | 			 T1k = TK + TL; | ||
|  | 		    } | ||
|  | 		    TN = TJ - TM; | ||
|  | 		    T1A = T1k - T1j; | ||
|  | 		    T18 = TJ + TM; | ||
|  | 		    T1l = T1j + T1k; | ||
|  | 	       } | ||
|  | 	       ro[WS(os, 7)] = T3 + Ta + Th + To; | ||
|  | 	       io[WS(os, 7)] = T16 + T19 + T17 + T18; | ||
|  | 	       ro[0] = Tp + Ts + Tv + Ty; | ||
|  | 	       io[0] = T1f + T1i + T1o + T1l; | ||
|  | 	       { | ||
|  | 		    E TV, Tz, T1e, T1d; | ||
|  | 		    TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU); | ||
|  | 		    Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta); | ||
|  | 		    ro[WS(os, 5)] = Tz - TV; | ||
|  | 		    ro[WS(os, 9)] = Tz + TV; | ||
|  | 		    T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12); | ||
|  | 		    T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19); | ||
|  | 		    io[WS(os, 5)] = T1d - T1e; | ||
|  | 		    io[WS(os, 9)] = T1e + T1d; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TX, TW, T1b, T1c; | ||
|  | 		    TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN); | ||
|  | 		    TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th); | ||
|  | 		    ro[WS(os, 13)] = TW - TX; | ||
|  | 		    ro[WS(os, 1)] = TW + TX; | ||
|  | 		    T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11); | ||
|  | 		    T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17); | ||
|  | 		    io[WS(os, 1)] = T1b + T1c; | ||
|  | 		    io[WS(os, 13)] = T1c - T1b; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TZ, TY, T13, T1a; | ||
|  | 		    TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU); | ||
|  | 		    TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta); | ||
|  | 		    ro[WS(os, 11)] = TY - TZ; | ||
|  | 		    ro[WS(os, 3)] = TY + TZ; | ||
|  | 		    T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12); | ||
|  | 		    T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19); | ||
|  | 		    io[WS(os, 3)] = T13 + T1a; | ||
|  | 		    io[WS(os, 11)] = T1a - T13; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1t, T1p, T1C, T1y; | ||
|  | 		    T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s); | ||
|  | 		    T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o); | ||
|  | 		    io[WS(os, 6)] = T1p - T1t; | ||
|  | 		    io[WS(os, 8)] = T1t + T1p; | ||
|  | 		    T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B); | ||
|  | 		    T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv); | ||
|  | 		    ro[WS(os, 6)] = T1y - T1C; | ||
|  | 		    ro[WS(os, 8)] = T1y + T1C; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1v, T1u, T1E, T1D; | ||
|  | 		    T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r); | ||
|  | 		    T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i); | ||
|  | 		    io[WS(os, 4)] = T1u - T1v; | ||
|  | 		    io[WS(os, 10)] = T1v + T1u; | ||
|  | 		    T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A); | ||
|  | 		    T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts); | ||
|  | 		    ro[WS(os, 4)] = T1D - T1E; | ||
|  | 		    ro[WS(os, 10)] = T1D + T1E; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1w, T1x, T1G, T1F; | ||
|  | 		    T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r); | ||
|  | 		    T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i); | ||
|  | 		    io[WS(os, 2)] = T1w + T1x; | ||
|  | 		    io[WS(os, 12)] = T1x - T1w; | ||
|  | 		    T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A); | ||
|  | 		    T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts); | ||
|  | 		    ro[WS(os, 12)] = T1F - T1G; | ||
|  | 		    ro[WS(os, 2)] = T1F + T1G; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 14, "n1_14", { 100, 24, 48, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_n1_14) (planner *p) { X(kdft_register) (p, n1_14, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |