328 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			328 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "dft/dft.h"
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Compute transforms of prime sizes using Rader's trick: turn them | ||
|  |  * into convolutions of size n - 1, which you then perform via a pair | ||
|  |  * of FFTs. | ||
|  |  */ | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_dft super; | ||
|  | 
 | ||
|  |      plan *cld1, *cld2; | ||
|  |      R *omega; | ||
|  |      INT n, g, ginv; | ||
|  |      INT is, os; | ||
|  |      plan *cld_omega; | ||
|  | } P; | ||
|  | 
 | ||
|  | static rader_tl *omegas = 0; | ||
|  | 
 | ||
|  | static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv) | ||
|  | { | ||
|  |      plan_dft *p = (plan_dft *) p_; | ||
|  |      R *omega; | ||
|  |      INT i, gpower; | ||
|  |      trigreal scale; | ||
|  |      triggen *t; | ||
|  | 
 | ||
|  |      if ((omega = X(rader_tl_find)(n, n, ginv, omegas))) | ||
|  | 	  return omega; | ||
|  | 
 | ||
|  |      omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES); | ||
|  | 
 | ||
|  |      scale = n - 1.0; /* normalization for convolution */ | ||
|  | 
 | ||
|  |      t = X(mktriggen)(wakefulness, n); | ||
|  |      for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { | ||
|  | 	  trigreal w[2]; | ||
|  | 	  t->cexpl(t, gpower, w); | ||
|  | 	  omega[2*i] = w[0] / scale; | ||
|  | 	  omega[2*i+1] = FFT_SIGN * w[1] / scale; | ||
|  |      } | ||
|  |      X(triggen_destroy)(t); | ||
|  |      A(gpower == 1); | ||
|  | 
 | ||
|  |      p->apply(p_, omega, omega + 1, omega, omega + 1); | ||
|  | 
 | ||
|  |      X(rader_tl_insert)(n, n, ginv, omega, &omegas); | ||
|  |      return omega; | ||
|  | } | ||
|  | 
 | ||
|  | static void free_omega(R *omega) | ||
|  | { | ||
|  |      X(rader_tl_delete)(omega, &omegas); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /***************************************************************************/ | ||
|  | 
 | ||
|  | /* Below, we extensively use the identity that fft(x*)* = ifft(x) in
 | ||
|  |    order to share data between forward and backward transforms and to | ||
|  |    obviate the necessity of having separate forward and backward | ||
|  |    plans.  (Although we often compute separate plans these days anyway | ||
|  |    due to the differing strides, etcetera.) | ||
|  | 
 | ||
|  |    Of course, since the new FFTW gives us separate pointers to | ||
|  |    the real and imaginary parts, we could have instead used the | ||
|  |    fft(r,i) = ifft(i,r) form of this identity, but it was easier to | ||
|  |    reuse the code from our old version. */ | ||
|  | 
 | ||
|  | static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is, os; | ||
|  |      INT k, gpower, g, r; | ||
|  |      R *buf; | ||
|  |      R r0 = ri[0], i0 = ii[0]; | ||
|  | 
 | ||
|  |      r = ego->n; is = ego->is; os = ego->os; g = ego->g;  | ||
|  |      buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); | ||
|  | 
 | ||
|  |      /* First, permute the input, storing in buf: */ | ||
|  |      for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { | ||
|  | 	  R rA, iA; | ||
|  | 	  rA = ri[gpower * is]; | ||
|  | 	  iA = ii[gpower * is]; | ||
|  | 	  buf[2*k] = rA; buf[2*k + 1] = iA; | ||
|  |      } | ||
|  |      /* gpower == g^(r-1) mod r == 1 */; | ||
|  | 
 | ||
|  | 
 | ||
|  |      /* compute DFT of buf, storing in output (except DC): */ | ||
|  |      { | ||
|  | 	    plan_dft *cld = (plan_dft *) ego->cld1; | ||
|  | 	    cld->apply(ego->cld1, buf, buf+1, ro+os, io+os); | ||
|  |      } | ||
|  | 
 | ||
|  |      /* set output DC component: */ | ||
|  |      { | ||
|  | 	  ro[0] = r0 + ro[os]; | ||
|  | 	  io[0] = i0 + io[os]; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* now, multiply by omega: */ | ||
|  |      { | ||
|  | 	  const R *omega = ego->omega; | ||
|  | 	  for (k = 0; k < r - 1; ++k) { | ||
|  | 	       E rB, iB, rW, iW; | ||
|  | 	       rW = omega[2*k]; | ||
|  | 	       iW = omega[2*k+1]; | ||
|  | 	       rB = ro[(k+1)*os]; | ||
|  | 	       iB = io[(k+1)*os]; | ||
|  | 	       ro[(k+1)*os] = rW * rB - iW * iB; | ||
|  | 	       io[(k+1)*os] = -(rW * iB + iW * rB); | ||
|  | 	  } | ||
|  |      } | ||
|  |       | ||
|  |      /* this will add input[0] to all of the outputs after the ifft */ | ||
|  |      ro[os] += r0; | ||
|  |      io[os] -= i0; | ||
|  | 
 | ||
|  |      /* inverse FFT: */ | ||
|  |      { | ||
|  | 	    plan_dft *cld = (plan_dft *) ego->cld2; | ||
|  | 	    cld->apply(ego->cld2, ro+os, io+os, buf, buf+1); | ||
|  |      } | ||
|  |       | ||
|  |      /* finally, do inverse permutation to unshuffle the output: */ | ||
|  |      { | ||
|  | 	  INT ginv = ego->ginv; | ||
|  | 	  gpower = 1; | ||
|  | 	  for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { | ||
|  | 	       ro[gpower * os] = buf[2*k]; | ||
|  | 	       io[gpower * os] = -buf[2*k+1]; | ||
|  | 	  } | ||
|  | 	  A(gpower == 1); | ||
|  |      } | ||
|  | 
 | ||
|  | 
 | ||
|  |      X(ifree)(buf); | ||
|  | } | ||
|  | 
 | ||
|  | /***************************************************************************/ | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  | 
 | ||
|  |      X(plan_awake)(ego->cld1, wakefulness); | ||
|  |      X(plan_awake)(ego->cld2, wakefulness); | ||
|  |      X(plan_awake)(ego->cld_omega, wakefulness); | ||
|  | 
 | ||
|  |      switch (wakefulness) { | ||
|  | 	 case SLEEPY: | ||
|  | 	      free_omega(ego->omega); | ||
|  | 	      ego->omega = 0; | ||
|  | 	      break; | ||
|  | 	 default: | ||
|  | 	      ego->g = X(find_generator)(ego->n); | ||
|  | 	      ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n); | ||
|  | 	      A(MULMOD(ego->g, ego->ginv, ego->n) == 1); | ||
|  | 
 | ||
|  | 	      ego->omega = mkomega(wakefulness, | ||
|  | 				   ego->cld_omega, ego->n, ego->ginv); | ||
|  | 	      break; | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld_omega); | ||
|  |      X(plan_destroy_internal)(ego->cld2); | ||
|  |      X(plan_destroy_internal)(ego->cld1); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *)ego_; | ||
|  |      p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)", | ||
|  |               ego->n, ego->is, ego->os, ego->cld1); | ||
|  |      if (ego->cld2 != ego->cld1) | ||
|  |           p->print(p, "%(%p%)", ego->cld2); | ||
|  |      if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) | ||
|  |           p->print(p, "%(%p%)", ego->cld_omega); | ||
|  |      p->putchr(p, ')'); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego_, const problem *p_, | ||
|  | 		      const planner *plnr) | ||
|  | { | ||
|  |      const problem_dft *p = (const problem_dft *) p_; | ||
|  |      UNUSED(ego_); | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk == 0 | ||
|  | 	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW) | ||
|  | 	     && X(is_prime)(p->sz->dims[0].n) | ||
|  | 
 | ||
|  | 	     /* proclaim the solver SLOW if p-1 is not easily factorizable.
 | ||
|  | 		Bluestein should take care of this case. */ | ||
|  | 	     && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1)) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io, | ||
|  | 	       planner *plnr) | ||
|  | { | ||
|  |      plan *cld1 = (plan *) 0; | ||
|  |      plan *cld2 = (plan *) 0; | ||
|  |      plan *cld_omega = (plan *) 0; | ||
|  |      R *buf = (R *) 0; | ||
|  | 
 | ||
|  |      /* initial allocation for the purpose of planning */ | ||
|  |      buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS); | ||
|  | 
 | ||
|  |      cld1 = X(mkplan_f_d)(plnr,  | ||
|  | 			  X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os), | ||
|  | 					     X(mktensor_1d)(1, 0, 0), | ||
|  | 					     buf, buf + 1, ro + os, io + os), | ||
|  | 			  NO_SLOW, 0, 0); | ||
|  |      if (!cld1) goto nada; | ||
|  | 
 | ||
|  |      cld2 = X(mkplan_f_d)(plnr,  | ||
|  | 			  X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2), | ||
|  | 					     X(mktensor_1d)(1, 0, 0), | ||
|  | 					     ro + os, io + os, buf, buf + 1), | ||
|  | 			  NO_SLOW, 0, 0); | ||
|  | 
 | ||
|  |      if (!cld2) goto nada; | ||
|  | 
 | ||
|  |      /* plan for omega array */ | ||
|  |      cld_omega = X(mkplan_f_d)(plnr,  | ||
|  | 			       X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2), | ||
|  | 						  X(mktensor_1d)(1, 0, 0), | ||
|  | 						  buf, buf + 1, buf, buf + 1), | ||
|  | 			       NO_SLOW, ESTIMATE, 0); | ||
|  |      if (!cld_omega) goto nada; | ||
|  | 
 | ||
|  |      /* deallocate buffers; let awake() or apply() allocate them for real */ | ||
|  |      X(ifree)(buf); | ||
|  |      buf = 0; | ||
|  | 
 | ||
|  |      pln->cld1 = cld1; | ||
|  |      pln->cld2 = cld2; | ||
|  |      pln->cld_omega = cld_omega; | ||
|  |      pln->omega = 0; | ||
|  |      pln->n = n; | ||
|  |      pln->is = is; | ||
|  |      pln->os = os; | ||
|  | 
 | ||
|  |      X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); | ||
|  |      pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6; | ||
|  |      pln->super.super.ops.add += (n - 1) * 2 + 4; | ||
|  |      pln->super.super.ops.mul += (n - 1) * 4; | ||
|  | 
 | ||
|  |      return 1; | ||
|  | 
 | ||
|  |  nada: | ||
|  |      X(ifree0)(buf); | ||
|  |      X(plan_destroy_internal)(cld_omega); | ||
|  |      X(plan_destroy_internal)(cld2); | ||
|  |      X(plan_destroy_internal)(cld1); | ||
|  |      return 0; | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const problem_dft *p = (const problem_dft *) p_; | ||
|  |      P *pln; | ||
|  |      INT n; | ||
|  |      INT is, os; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(dft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego, p_, plnr)) | ||
|  | 	  return (plan *) 0; | ||
|  | 
 | ||
|  |      n = p->sz->dims[0].n; | ||
|  |      is = p->sz->dims[0].is; | ||
|  |      os = p->sz->dims[0].os; | ||
|  | 
 | ||
|  |      pln = MKPLAN_DFT(P, &padt, apply); | ||
|  |      if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) { | ||
|  | 	  X(ifree)(pln); | ||
|  | 	  return (plan *) 0; | ||
|  |      } | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(dft_rader_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |