233 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			233 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "rdft/rdft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  |      rdft_kind kind; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      twid *td; | ||
|  |      INT n, is, os; | ||
|  |      rdft_kind kind; | ||
|  | } P; | ||
|  | 
 | ||
|  | /***************************************************************************/ | ||
|  | 
 | ||
|  | static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1) | ||
|  | { | ||
|  |      INT i; | ||
|  | 
 | ||
|  |      E rr = x[0], ri = 0; | ||
|  |      x += 1; | ||
|  |      for (i = 1; i + i < n; ++i) { | ||
|  | 	  rr += x[0] * w[0]; | ||
|  | 	  ri += x[1] * w[1]; | ||
|  | 	  x += 2; w += 2; | ||
|  |      } | ||
|  |      *or0 = rr; | ||
|  |      *oi1 = ri; | ||
|  | } | ||
|  | 
 | ||
|  | static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr) | ||
|  | { | ||
|  |      INT i; | ||
|  |      E sr; | ||
|  |      o[0] = sr = xr[0]; o += 1; | ||
|  |      for (i = 1; i + i < n; ++i) { | ||
|  | 	  R a, b; | ||
|  | 	  a = xr[i * xs]; | ||
|  | 	  b =  xr[(n - i) * xs]; | ||
|  | 	  sr += (o[0] = a + b); | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	  o[1] = b - a; | ||
|  | #else
 | ||
|  | 	  o[1] = a - b; | ||
|  | #endif
 | ||
|  | 	  o += 2; | ||
|  |      } | ||
|  |      *pr = sr; | ||
|  | } | ||
|  | 		     | ||
|  | static void apply_r2hc(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT i; | ||
|  |      INT n = ego->n, is = ego->is, os = ego->os; | ||
|  |      const R *W = ego->td->W; | ||
|  |      E *buf; | ||
|  |      size_t bufsz = n * sizeof(E); | ||
|  | 
 | ||
|  |      BUF_ALLOC(E *, buf, bufsz); | ||
|  |      hartley_r2hc(n, I, is, buf, O); | ||
|  | 
 | ||
|  |      for (i = 1; i + i < n; ++i) { | ||
|  | 	  cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os); | ||
|  | 	  W += n - 1; | ||
|  |      } | ||
|  | 
 | ||
|  |      BUF_FREE(buf, bufsz); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1) | ||
|  | { | ||
|  |      INT i; | ||
|  | 
 | ||
|  |      E rr = x[0], ii = 0;  | ||
|  |      x += 1; | ||
|  |      for (i = 1; i + i < n; ++i) { | ||
|  | 	  rr += x[0] * w[0]; | ||
|  | 	  ii += x[1] * w[1]; | ||
|  | 	  x += 2; w += 2; | ||
|  |      } | ||
|  | #if FFT_SIGN == -1
 | ||
|  |      *or0 = rr - ii; | ||
|  |      *or1 = rr + ii; | ||
|  | #else
 | ||
|  |      *or0 = rr + ii; | ||
|  |      *or1 = rr - ii; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr) | ||
|  | { | ||
|  |      INT i; | ||
|  |      E sr; | ||
|  | 
 | ||
|  |      o[0] = sr = x[0]; o += 1; | ||
|  |      for (i = 1; i + i < n; ++i) { | ||
|  | 	  sr += (o[0] = x[i * xs] + x[i * xs]); | ||
|  | 	  o[1] = x[(n - i) * xs] + x[(n - i) * xs]; | ||
|  | 	  o += 2; | ||
|  |      } | ||
|  |      *pr = sr; | ||
|  | } | ||
|  | 
 | ||
|  | static void apply_hc2r(const plan *ego_, R *I, R *O)		     | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT i; | ||
|  |      INT n = ego->n, is = ego->is, os = ego->os; | ||
|  |      const R *W = ego->td->W; | ||
|  |      E *buf; | ||
|  |      size_t bufsz = n * sizeof(E); | ||
|  | 
 | ||
|  |      BUF_ALLOC(E *, buf, bufsz); | ||
|  |      hartley_hc2r(n, I, is, buf, O); | ||
|  | 
 | ||
|  |      for (i = 1; i + i < n; ++i) { | ||
|  | 	  cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os); | ||
|  | 	  W += n - 1; | ||
|  |      } | ||
|  | 
 | ||
|  |      BUF_FREE(buf, bufsz); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /***************************************************************************/ | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      static const tw_instr half_tw[] = { | ||
|  | 	  { TW_HALF, 1, 0 }, | ||
|  | 	  { TW_NEXT, 1, 0 } | ||
|  |      }; | ||
|  | 
 | ||
|  |      X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, | ||
|  | 		      (ego->n - 1) / 2); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  | 
 | ||
|  |      p->print(p, "(rdft-generic-%s-%D)",  | ||
|  | 	      ego->kind == R2HC ? "r2hc" : "hc2r",  | ||
|  | 	      ego->n); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const S *ego, const problem *p_,  | ||
|  | 		      const planner *plnr) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk == 0 | ||
|  | 	     && (p->sz->dims[0].n % 2) == 1  | ||
|  | 	     && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) | ||
|  | 	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) | ||
|  | 	     && X(is_prime)(p->sz->dims[0].n) | ||
|  | 	     && p->kind[0] == ego->kind | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const S *ego = (const S *)ego_; | ||
|  |      const problem_rdft *p; | ||
|  |      P *pln; | ||
|  |      INT n; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, X(plan_null_destroy) | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  |      pln = MKPLAN_RDFT(P, &padt,  | ||
|  | 		       R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r); | ||
|  | 
 | ||
|  |      pln->n = n = p->sz->dims[0].n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->td = 0; | ||
|  |      pln->kind = ego->kind; | ||
|  | 
 | ||
|  |      pln->super.super.ops.add = (n-1) * 2.5; | ||
|  |      pln->super.super.ops.mul = 0; | ||
|  |      pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ; | ||
|  | #if 0 /* these are nice pipelined sequential loads and should cost nothing */
 | ||
|  |      pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1));  /* approximate */ | ||
|  | #endif
 | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | static solver *mksolver(rdft_kind kind) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      slv->kind = kind; | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(rdft_generic_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver(R2HC)); | ||
|  |      REGISTER_SOLVER(p, mksolver(HC2R)); | ||
|  | } |