357 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			357 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:50 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 72 FP additions, 66 FP multiplications, | ||
|  |  * (or, 18 additions, 12 multiplications, 54 fused multiply/add), | ||
|  |  * 41 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP801937735, +0.801937735804838252472204639014890102331838324); | ||
|  |      DK(KP692021471, +0.692021471630095869627814897002069140197260599); | ||
|  |      DK(KP356895867, +0.356895867892209443894399510021300583399127187); | ||
|  |      DK(KP554958132, +0.554958132087371191422194871006410481067288862); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | ||
|  | 	       E T1, T4, TC, T7, TB, Ta, TA, TD, TZ, T1l, T1b, TP, Td, Tt, Tw; | ||
|  | 	       E Tv, Tu, Tp, Ty, T1j, T1e, TX, TS; | ||
|  | 	       T1 = cr[0]; | ||
|  | 	       { | ||
|  | 		    E T2, T3, T1a, TO, Tc; | ||
|  | 		    T2 = cr[WS(rs, 1)]; | ||
|  | 		    T3 = ci[0]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    TC = T2 - T3; | ||
|  | 		    { | ||
|  | 			 E T5, T6, T8, T9; | ||
|  | 			 T5 = cr[WS(rs, 2)]; | ||
|  | 			 T6 = ci[WS(rs, 1)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 TB = T5 - T6; | ||
|  | 			 T8 = cr[WS(rs, 3)]; | ||
|  | 			 T9 = ci[WS(rs, 2)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 TA = T8 - T9; | ||
|  | 		    } | ||
|  | 		    TD = FNMS(KP554958132, TC, TB); | ||
|  | 		    TZ = FMA(KP554958132, TB, TA); | ||
|  | 		    T1l = FMA(KP554958132, TA, TC); | ||
|  | 		    T1a = FNMS(KP356895867, T7, T4); | ||
|  | 		    T1b = FNMS(KP692021471, T1a, Ta); | ||
|  | 		    TO = FNMS(KP356895867, T4, Ta); | ||
|  | 		    TP = FNMS(KP692021471, TO, T7); | ||
|  | 		    Tc = FNMS(KP356895867, Ta, T7); | ||
|  | 		    Td = FNMS(KP692021471, Tc, T4); | ||
|  | 	       } | ||
|  | 	       Tt = ci[WS(rs, 6)]; | ||
|  | 	       { | ||
|  | 		    E Th, Tk, Tn, Tf, Tg; | ||
|  | 		    Tf = ci[WS(rs, 3)]; | ||
|  | 		    Tg = cr[WS(rs, 4)]; | ||
|  | 		    Th = Tf + Tg; | ||
|  | 		    Tw = Tf - Tg; | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, Tl, Tm; | ||
|  | 			 Ti = ci[WS(rs, 4)]; | ||
|  | 			 Tj = cr[WS(rs, 5)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 Tv = Ti - Tj; | ||
|  | 			 Tl = ci[WS(rs, 5)]; | ||
|  | 			 Tm = cr[WS(rs, 6)]; | ||
|  | 			 Tn = Tl + Tm; | ||
|  | 			 Tu = Tl - Tm; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E To, Tx, T1i, T1d, TW, TR; | ||
|  | 			 To = FNMS(KP554958132, Tn, Tk); | ||
|  | 			 Tp = FNMS(KP801937735, To, Th); | ||
|  | 			 Tx = FNMS(KP356895867, Tw, Tv); | ||
|  | 			 Ty = FNMS(KP692021471, Tx, Tu); | ||
|  | 			 T1i = FNMS(KP356895867, Tv, Tu); | ||
|  | 			 T1j = FNMS(KP692021471, T1i, Tw); | ||
|  | 			 T1d = FMA(KP554958132, Th, Tn); | ||
|  | 			 T1e = FMA(KP801937735, T1d, Tk); | ||
|  | 			 TW = FNMS(KP356895867, Tu, Tw); | ||
|  | 			 TX = FNMS(KP692021471, TW, Tv); | ||
|  | 			 TR = FMA(KP554958132, Tk, Th); | ||
|  | 			 TS = FNMS(KP801937735, TR, Tn); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       cr[0] = T1 + T4 + T7 + Ta; | ||
|  | 	       ci[0] = Tt + Tu + Tv + Tw; | ||
|  | 	       { | ||
|  | 		    E Tq, TI, TF, TL, Te, Tz, TE; | ||
|  | 		    Te = FNMS(KP900968867, Td, T1); | ||
|  | 		    Tq = FNMS(KP974927912, Tp, Te); | ||
|  | 		    TI = FMA(KP974927912, Tp, Te); | ||
|  | 		    Tz = FNMS(KP900968867, Ty, Tt); | ||
|  | 		    TE = FNMS(KP801937735, TD, TA); | ||
|  | 		    TF = FMA(KP974927912, TE, Tz); | ||
|  | 		    TL = FNMS(KP974927912, TE, Tz); | ||
|  | 		    { | ||
|  | 			 E Tb, Tr, Ts, TG; | ||
|  | 			 Tb = W[4]; | ||
|  | 			 Tr = Tb * Tq; | ||
|  | 			 Ts = W[5]; | ||
|  | 			 TG = Ts * Tq; | ||
|  | 			 cr[WS(rs, 3)] = FNMS(Ts, TF, Tr); | ||
|  | 			 ci[WS(rs, 3)] = FMA(Tb, TF, TG); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TH, TJ, TK, TM; | ||
|  | 			 TH = W[6]; | ||
|  | 			 TJ = TH * TI; | ||
|  | 			 TK = W[7]; | ||
|  | 			 TM = TK * TI; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(TK, TL, TJ); | ||
|  | 			 ci[WS(rs, 4)] = FMA(TH, TL, TM); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TT, T14, T11, T17, TQ, TY, T10; | ||
|  | 		    TQ = FNMS(KP900968867, TP, T1); | ||
|  | 		    TT = FNMS(KP974927912, TS, TQ); | ||
|  | 		    T14 = FMA(KP974927912, TS, TQ); | ||
|  | 		    TY = FNMS(KP900968867, TX, Tt); | ||
|  | 		    T10 = FNMS(KP801937735, TZ, TC); | ||
|  | 		    T11 = FMA(KP974927912, T10, TY); | ||
|  | 		    T17 = FNMS(KP974927912, T10, TY); | ||
|  | 		    { | ||
|  | 			 E TN, TU, TV, T12; | ||
|  | 			 TN = W[2]; | ||
|  | 			 TU = TN * TT; | ||
|  | 			 TV = W[3]; | ||
|  | 			 T12 = TV * TT; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(TV, T11, TU); | ||
|  | 			 ci[WS(rs, 2)] = FMA(TN, T11, T12); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T13, T15, T16, T18; | ||
|  | 			 T13 = W[8]; | ||
|  | 			 T15 = T13 * T14; | ||
|  | 			 T16 = W[9]; | ||
|  | 			 T18 = T16 * T14; | ||
|  | 			 cr[WS(rs, 5)] = FNMS(T16, T17, T15); | ||
|  | 			 ci[WS(rs, 5)] = FMA(T13, T17, T18); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1f, T1q, T1n, T1t, T1c, T1k, T1m; | ||
|  | 		    T1c = FNMS(KP900968867, T1b, T1); | ||
|  | 		    T1f = FNMS(KP974927912, T1e, T1c); | ||
|  | 		    T1q = FMA(KP974927912, T1e, T1c); | ||
|  | 		    T1k = FNMS(KP900968867, T1j, Tt); | ||
|  | 		    T1m = FMA(KP801937735, T1l, TB); | ||
|  | 		    T1n = FMA(KP974927912, T1m, T1k); | ||
|  | 		    T1t = FNMS(KP974927912, T1m, T1k); | ||
|  | 		    { | ||
|  | 			 E T19, T1g, T1h, T1o; | ||
|  | 			 T19 = W[0]; | ||
|  | 			 T1g = T19 * T1f; | ||
|  | 			 T1h = W[1]; | ||
|  | 			 T1o = T1h * T1f; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g); | ||
|  | 			 ci[WS(rs, 1)] = FMA(T19, T1n, T1o); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1p, T1r, T1s, T1u; | ||
|  | 			 T1p = W[10]; | ||
|  | 			 T1r = T1p * T1q; | ||
|  | 			 T1s = W[11]; | ||
|  | 			 T1u = T1s * T1q; | ||
|  | 			 cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r); | ||
|  | 			 ci[WS(rs, 6)] = FMA(T1p, T1t, T1u); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 7 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 18, 12, 54, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_7) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_7, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 72 FP additions, 60 FP multiplications, | ||
|  |  * (or, 36 additions, 24 multiplications, 36 fused multiply/add), | ||
|  |  * 36 stack variables, 6 constants, and 28 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP222520933, +0.222520933956314404288902564496794759466355569); | ||
|  |      DK(KP900968867, +0.900968867902419126236102319507445051165919162); | ||
|  |      DK(KP623489801, +0.623489801858733530525004884004239810632274731); | ||
|  |      DK(KP781831482, +0.781831482468029808708444526674057750232334519); | ||
|  |      DK(KP974927912, +0.974927912181823607018131682993931217232785801); | ||
|  |      DK(KP433883739, +0.433883739117558120475768332848358754609990728); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { | ||
|  | 	       E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq; | ||
|  | 	       E TF, TR, TU, TJ, Tt; | ||
|  | 	       { | ||
|  | 		    E Tu, Tw, Tv, T2, T3; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    T2 = cr[WS(rs, 1)]; | ||
|  | 		    T3 = ci[0]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    Tu = T2 - T3; | ||
|  | 		    { | ||
|  | 			 E T5, T6, T8, T9; | ||
|  | 			 T5 = cr[WS(rs, 2)]; | ||
|  | 			 T6 = ci[WS(rs, 1)]; | ||
|  | 			 T7 = T5 + T6; | ||
|  | 			 Tw = T5 - T6; | ||
|  | 			 T8 = cr[WS(rs, 3)]; | ||
|  | 			 T9 = ci[WS(rs, 2)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 Tv = T8 - T9; | ||
|  | 		    } | ||
|  | 		    Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw); | ||
|  | 		    TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv); | ||
|  | 		    TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw); | ||
|  | 		    TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); | ||
|  | 		    TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); | ||
|  | 		    Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tp, Tn, To, Tc, Td; | ||
|  | 		    Tb = ci[WS(rs, 6)]; | ||
|  | 		    Tc = ci[WS(rs, 5)]; | ||
|  | 		    Td = cr[WS(rs, 6)]; | ||
|  | 		    Te = Tc - Td; | ||
|  | 		    Tp = Tc + Td; | ||
|  | 		    { | ||
|  | 			 E Tf, Tg, Ti, Tj; | ||
|  | 			 Tf = ci[WS(rs, 4)]; | ||
|  | 			 Tg = cr[WS(rs, 5)]; | ||
|  | 			 Th = Tf - Tg; | ||
|  | 			 Tn = Tf + Tg; | ||
|  | 			 Ti = ci[WS(rs, 3)]; | ||
|  | 			 Tj = cr[WS(rs, 4)]; | ||
|  | 			 Tk = Ti - Tj; | ||
|  | 			 To = Ti + Tj; | ||
|  | 		    } | ||
|  | 		    Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp); | ||
|  | 		    TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To); | ||
|  | 		    TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp); | ||
|  | 		    TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te); | ||
|  | 		    TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th); | ||
|  | 		    Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te); | ||
|  | 	       } | ||
|  | 	       cr[0] = T1 + T4 + T7 + Ta; | ||
|  | 	       ci[0] = Tb + Te + Th + Tk; | ||
|  | 	       { | ||
|  | 		    E Tr, Ty, Tl, Ts; | ||
|  | 		    Tr = Tm - Tq; | ||
|  | 		    Ty = Tt - Tx; | ||
|  | 		    Tl = W[6]; | ||
|  | 		    Ts = W[7]; | ||
|  | 		    cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr); | ||
|  | 		    ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TY, T10, TX, TZ; | ||
|  | 		    TY = TQ + TR; | ||
|  | 		    T10 = TV + TU; | ||
|  | 		    TX = W[2]; | ||
|  | 		    TZ = W[3]; | ||
|  | 		    cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY); | ||
|  | 		    ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TA, TC, Tz, TB; | ||
|  | 		    TA = Tm + Tq; | ||
|  | 		    TC = Tx + Tt; | ||
|  | 		    Tz = W[4]; | ||
|  | 		    TB = W[5]; | ||
|  | 		    cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA); | ||
|  | 		    ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TM, TO, TL, TN; | ||
|  | 		    TM = TE + TF; | ||
|  | 		    TO = TJ - TI; | ||
|  | 		    TL = W[10]; | ||
|  | 		    TN = W[11]; | ||
|  | 		    cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM); | ||
|  | 		    ci[WS(rs, 6)] = FMA(TL, TO, TN * TM); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TS, TW, TP, TT; | ||
|  | 		    TS = TQ - TR; | ||
|  | 		    TW = TU - TV; | ||
|  | 		    TP = W[8]; | ||
|  | 		    TT = W[9]; | ||
|  | 		    cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS); | ||
|  | 		    ci[WS(rs, 5)] = FMA(TP, TW, TT * TS); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TG, TK, TD, TH; | ||
|  | 		    TG = TE - TF; | ||
|  | 		    TK = TI + TJ; | ||
|  | 		    TD = W[0]; | ||
|  | 		    TH = W[1]; | ||
|  | 		    cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG); | ||
|  | 		    ci[WS(rs, 1)] = FMA(TD, TK, TH * TG); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 7 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 36, 24, 36, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_7) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_7, &desc); | ||
|  | } | ||
|  | #endif
 |