232 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			232 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:22 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 41 FP additions, 40 FP multiplications, | ||
|  |  * (or, 23 additions, 22 multiplications, 18 fused multiply/add), | ||
|  |  * 52 stack variables, 2 constants, and 16 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { | ||
|  | 	       V T8, Tt, TG, TF, TD, TC, Tn, Tu, T3, Tc, Tl, Ts, T7, Ta, Th; | ||
|  | 	       V Tq, T1, T2, Tb, Tj, Tk, Ti, Tr, T5, T6, T4, T9, Tf, Tg, Te; | ||
|  | 	       V Tp, Td, Tm, Tw, Tx, To, Tv, TM, TN, TK, TL, TA, TB, Ty, Tz; | ||
|  | 	       V TI, TJ, TE, TH; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VFMACONJ(T2, T1); | ||
|  | 	       Tb = LDW(&(W[0])); | ||
|  | 	       Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1)); | ||
|  | 	       Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Ti = LDW(&(W[TWVL * 12])); | ||
|  | 	       Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj)); | ||
|  | 	       Tr = LDW(&(W[TWVL * 10])); | ||
|  | 	       Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj)); | ||
|  | 	       T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       T4 = LDW(&(W[TWVL * 6])); | ||
|  | 	       T7 = VZMULJ(T4, VFMACONJ(T6, T5)); | ||
|  | 	       T9 = LDW(&(W[TWVL * 8])); | ||
|  | 	       Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5)); | ||
|  | 	       Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Te = LDW(&(W[TWVL * 4])); | ||
|  | 	       Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf)); | ||
|  | 	       Tp = LDW(&(W[TWVL * 2])); | ||
|  | 	       Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf)); | ||
|  | 	       T8 = VSUB(T3, T7); | ||
|  | 	       Tt = VSUB(Tq, Ts); | ||
|  | 	       TG = VADD(Th, Tl); | ||
|  | 	       TF = VADD(Tc, Ta); | ||
|  | 	       TD = VADD(Tq, Ts); | ||
|  | 	       TC = VADD(T3, T7); | ||
|  | 	       Td = VSUB(Ta, Tc); | ||
|  | 	       Tm = VSUB(Th, Tl); | ||
|  | 	       Tn = VADD(Td, Tm); | ||
|  | 	       Tu = VSUB(Tm, Td); | ||
|  | 	       To = VFMA(LDK(KP707106781), Tn, T8); | ||
|  | 	       Tv = VFNMS(LDK(KP707106781), Tu, Tt); | ||
|  | 	       Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To)); | ||
|  | 	       Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To))); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       ST(&(Rm[0]), Tx, -ms, &(Rm[0])); | ||
|  | 	       TK = VADD(TC, TD); | ||
|  | 	       TL = VADD(TF, TG); | ||
|  | 	       TM = VMUL(LDK(KP500000000), VSUB(TK, TL)); | ||
|  | 	       TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK))); | ||
|  | 	       ST(&(Rp[0]), TM, ms, &(Rp[0])); | ||
|  | 	       ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Ty = VFNMS(LDK(KP707106781), Tn, T8); | ||
|  | 	       Tz = VFMA(LDK(KP707106781), Tu, Tt); | ||
|  | 	       TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty))); | ||
|  | 	       TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty)); | ||
|  | 	       ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0])); | ||
|  | 	       ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       TE = VSUB(TC, TD); | ||
|  | 	       TH = VSUB(TF, TG); | ||
|  | 	       TI = VMUL(LDK(KP500000000), VFMAI(TH, TE)); | ||
|  | 	       TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE))); | ||
|  | 	       ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0])); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, { 23, 22, 18, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_8) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include rdft/simd/hc2cfv.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 41 FP additions, 23 FP multiplications, | ||
|  |  * (or, 41 additions, 23 multiplications, 0 fused multiply/add), | ||
|  |  * 57 stack variables, 3 constants, and 16 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/simd/hc2cfv.h"
 | ||
|  | 
 | ||
|  | static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DVK(KP353553390, +0.353553390593273762200422181052424519642417969); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { | ||
|  | 	       V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4; | ||
|  | 	       V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb; | ||
|  | 	       V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO; | ||
|  | 	       V TL, TP, TH, TJ, TM, TR, TN, TQ; | ||
|  | 	       T1 = LD(&(Rp[0]), ms, &(Rp[0])); | ||
|  | 	       T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); | ||
|  | 	       T2 = LD(&(Rm[0]), -ms, &(Rm[0])); | ||
|  | 	       T3 = VCONJ(T2); | ||
|  | 	       T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); | ||
|  | 	       T8 = VCONJ(T7); | ||
|  | 	       T4 = VADD(T1, T3); | ||
|  | 	       T5 = LDW(&(W[TWVL * 6])); | ||
|  | 	       T9 = VZMULJ(T5, VADD(T6, T8)); | ||
|  | 	       Ta = VADD(T4, T9); | ||
|  | 	       TE = VMUL(LDK(KP500000000), VSUB(T4, T9)); | ||
|  | 	       Tn = LDW(&(W[0])); | ||
|  | 	       To = VZMULIJ(Tn, VSUB(T3, T1)); | ||
|  | 	       Tp = LDW(&(W[TWVL * 8])); | ||
|  | 	       Tq = VZMULIJ(Tp, VSUB(T8, T6)); | ||
|  | 	       Tr = VADD(To, Tq); | ||
|  | 	       TF = VSUB(To, Tq); | ||
|  | 	       Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Te = VCONJ(Td); | ||
|  | 	       Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       Tj = VCONJ(Ti); | ||
|  | 	       Tb = LDW(&(W[TWVL * 2])); | ||
|  | 	       Tf = VZMULJ(Tb, VADD(Tc, Te)); | ||
|  | 	       Tg = LDW(&(W[TWVL * 10])); | ||
|  | 	       Tk = VZMULJ(Tg, VADD(Th, Tj)); | ||
|  | 	       Tl = VADD(Tf, Tk); | ||
|  | 	       TK = VSUB(Tf, Tk); | ||
|  | 	       Ts = LDW(&(W[TWVL * 4])); | ||
|  | 	       Tt = VZMULIJ(Ts, VSUB(Te, Tc)); | ||
|  | 	       Tu = LDW(&(W[TWVL * 12])); | ||
|  | 	       Tv = VZMULIJ(Tu, VSUB(Tj, Th)); | ||
|  | 	       Tw = VADD(Tt, Tv); | ||
|  | 	       TG = VSUB(Tv, Tt); | ||
|  | 	       Tm = VADD(Ta, Tl); | ||
|  | 	       Tx = VADD(Tr, Tw); | ||
|  | 	       Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx))); | ||
|  | 	       Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx)); | ||
|  | 	       ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       ST(&(Rp[0]), Tz, ms, &(Rp[0])); | ||
|  | 	       TA = VSUB(Ta, Tl); | ||
|  | 	       TB = VBYI(VSUB(Tw, Tr)); | ||
|  | 	       TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB))); | ||
|  | 	       TD = VMUL(LDK(KP500000000), VADD(TA, TB)); | ||
|  | 	       ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)])); | ||
|  | 	       ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0])); | ||
|  | 	       TH = VMUL(LDK(KP353553390), VADD(TF, TG)); | ||
|  | 	       TI = VADD(TE, TH); | ||
|  | 	       TO = VSUB(TE, TH); | ||
|  | 	       TJ = VMUL(LDK(KP707106781), VSUB(TG, TF)); | ||
|  | 	       TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK))); | ||
|  | 	       TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ))); | ||
|  | 	       TM = VCONJ(VSUB(TI, TL)); | ||
|  | 	       ST(&(Rm[0]), TM, -ms, &(Rm[0])); | ||
|  | 	       TR = VADD(TO, TP); | ||
|  | 	       ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       TN = VADD(TI, TL); | ||
|  | 	       ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)])); | ||
|  | 	       TQ = VCONJ(VSUB(TO, TP)); | ||
|  | 	       ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0])); | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(1, 1), | ||
|  |      VTW(1, 2), | ||
|  |      VTW(1, 3), | ||
|  |      VTW(1, 4), | ||
|  |      VTW(1, 5), | ||
|  |      VTW(1, 6), | ||
|  |      VTW(1, 7), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, { 41, 23, 0, 0 } }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_hc2cfdftv_8) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT); | ||
|  | } | ||
|  | #endif
 |