323 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			323 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:49 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include dft/simd/t1b.h -sign 1 */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 59 FP additions, 42 FP multiplications, | ||
|  |  * (or, 41 additions, 24 multiplications, 18 fused multiply/add), | ||
|  |  * 28 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t1b.h"
 | ||
|  | 
 | ||
|  | static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ii; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { | ||
|  | 	       V T1, TK, T6, TA, Tq, TI, Tv, TE, T9, TL, Te, TB, Ti, TH, Tn; | ||
|  | 	       V TD; | ||
|  | 	       { | ||
|  | 		    V T5, T3, T4, T2; | ||
|  | 		    T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 		    T5 = BYTW(&(W[TWVL * 14]), T4); | ||
|  | 		    T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    T3 = BYTW(&(W[TWVL * 6]), T2); | ||
|  | 		    TK = VSUB(T3, T5); | ||
|  | 		    T6 = VADD(T3, T5); | ||
|  | 		    TA = VFNMS(LDK(KP500000000), T6, T1); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tu, Ts, Tp, Tt, Tr; | ||
|  | 		    Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tq = BYTW(&(W[TWVL * 16]), Tp); | ||
|  | 		    Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tu = BYTW(&(W[TWVL * 8]), Tt); | ||
|  | 		    Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Ts = BYTW(&(W[0]), Tr); | ||
|  | 		    TI = VSUB(Tu, Ts); | ||
|  | 		    Tv = VADD(Ts, Tu); | ||
|  | 		    TE = VFNMS(LDK(KP500000000), Tv, Tq); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Td, Tb, T8, Tc, Ta; | ||
|  | 		    T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 		    T9 = BYTW(&(W[TWVL * 10]), T8); | ||
|  | 		    Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 		    Td = BYTW(&(W[TWVL * 2]), Tc); | ||
|  | 		    Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | ||
|  | 		    Tb = BYTW(&(W[TWVL * 18]), Ta); | ||
|  | 		    TL = VSUB(Tb, Td); | ||
|  | 		    Te = VADD(Tb, Td); | ||
|  | 		    TB = VFNMS(LDK(KP500000000), Te, T9); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tm, Tk, Th, Tl, Tj; | ||
|  | 		    Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Ti = BYTW(&(W[TWVL * 4]), Th); | ||
|  | 		    Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tm = BYTW(&(W[TWVL * 20]), Tl); | ||
|  | 		    Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tk = BYTW(&(W[TWVL * 12]), Tj); | ||
|  | 		    TH = VSUB(Tk, Tm); | ||
|  | 		    Tn = VADD(Tk, Tm); | ||
|  | 		    TD = VFNMS(LDK(KP500000000), Tn, Ti); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tg, Ty, Tx, Tz; | ||
|  | 		    { | ||
|  | 			 V T7, Tf, To, Tw; | ||
|  | 			 T7 = VADD(T1, T6); | ||
|  | 			 Tf = VADD(T9, Te); | ||
|  | 			 Tg = VSUB(T7, Tf); | ||
|  | 			 Ty = VADD(T7, Tf); | ||
|  | 			 To = VADD(Ti, Tn); | ||
|  | 			 Tw = VADD(Tq, Tv); | ||
|  | 			 Tx = VSUB(To, Tw); | ||
|  | 			 Tz = VADD(To, Tw); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TS, TW, TV, TX; | ||
|  | 		    { | ||
|  | 			 V TQ, TR, TT, TU; | ||
|  | 			 TQ = VSUB(TA, TB); | ||
|  | 			 TR = VADD(TH, TI); | ||
|  | 			 TS = VFNMS(LDK(KP866025403), TR, TQ); | ||
|  | 			 TW = VFMA(LDK(KP866025403), TR, TQ); | ||
|  | 			 TT = VSUB(TD, TE); | ||
|  | 			 TU = VSUB(TK, TL); | ||
|  | 			 TV = VFMA(LDK(KP866025403), TU, TT); | ||
|  | 			 TX = VFNMS(LDK(KP866025403), TU, TT); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TG, TO, TN, TP; | ||
|  | 		    { | ||
|  | 			 V TC, TF, TJ, TM; | ||
|  | 			 TC = VADD(TA, TB); | ||
|  | 			 TF = VADD(TD, TE); | ||
|  | 			 TG = VSUB(TC, TF); | ||
|  | 			 TO = VADD(TC, TF); | ||
|  | 			 TJ = VSUB(TH, TI); | ||
|  | 			 TM = VADD(TK, TL); | ||
|  | 			 TN = VMUL(LDK(KP866025403), VSUB(TJ, TM)); | ||
|  | 			 TP = VMUL(LDK(KP866025403), VADD(TM, TJ)); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      VTW(0, 5), | ||
|  |      VTW(0, 6), | ||
|  |      VTW(0, 7), | ||
|  |      VTW(0, 8), | ||
|  |      VTW(0, 9), | ||
|  |      VTW(0, 10), | ||
|  |      VTW(0, 11), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, { 41, 24, 18, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t1bv_12) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1bv_12, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include dft/simd/t1b.h -sign 1 */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 59 FP additions, 30 FP multiplications, | ||
|  |  * (or, 55 additions, 26 multiplications, 4 fused multiply/add), | ||
|  |  * 28 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t1b.h"
 | ||
|  | 
 | ||
|  | static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ii; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { | ||
|  | 	       V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty; | ||
|  | 	       V Tz; | ||
|  | 	       { | ||
|  | 		    V T5, T3, T4, T2; | ||
|  | 		    T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | ||
|  | 		    T5 = BYTW(&(W[TWVL * 14]), T4); | ||
|  | 		    T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 		    T3 = BYTW(&(W[TWVL * 6]), T2); | ||
|  | 		    Tt = VSUB(T3, T5); | ||
|  | 		    T6 = VADD(T3, T5); | ||
|  | 		    T7 = VFNMS(LDK(KP500000000), T6, T1); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tn, Tp, Tm, TA, To; | ||
|  | 		    Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tn = BYTW(&(W[0]), Tm); | ||
|  | 		    TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    TB = BYTW(&(W[TWVL * 16]), TA); | ||
|  | 		    To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tp = BYTW(&(W[TWVL * 8]), To); | ||
|  | 		    Tq = VSUB(Tn, Tp); | ||
|  | 		    TC = VADD(Tn, Tp); | ||
|  | 		    TD = VFNMS(LDK(KP500000000), TC, TB); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Td, Tb, T8, Tc, Ta; | ||
|  | 		    T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | ||
|  | 		    T9 = BYTW(&(W[TWVL * 10]), T8); | ||
|  | 		    Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 		    Td = BYTW(&(W[TWVL * 2]), Tc); | ||
|  | 		    Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | ||
|  | 		    Tb = BYTW(&(W[TWVL * 18]), Ta); | ||
|  | 		    Tu = VSUB(Tb, Td); | ||
|  | 		    Te = VADD(Tb, Td); | ||
|  | 		    Tf = VFNMS(LDK(KP500000000), Te, T9); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Ti, Tk, Th, Tw, Tj; | ||
|  | 		    Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Ti = BYTW(&(W[TWVL * 12]), Th); | ||
|  | 		    Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tx = BYTW(&(W[TWVL * 4]), Tw); | ||
|  | 		    Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    Tk = BYTW(&(W[TWVL * 20]), Tj); | ||
|  | 		    Tl = VSUB(Ti, Tk); | ||
|  | 		    Ty = VADD(Ti, Tk); | ||
|  | 		    Tz = VFNMS(LDK(KP500000000), Ty, Tx); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Ts, TG, TF, TH; | ||
|  | 		    { | ||
|  | 			 V Tg, Tr, Tv, TE; | ||
|  | 			 Tg = VSUB(T7, Tf); | ||
|  | 			 Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq)); | ||
|  | 			 Ts = VSUB(Tg, Tr); | ||
|  | 			 TG = VADD(Tg, Tr); | ||
|  | 			 Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu)); | ||
|  | 			 TE = VSUB(Tz, TD); | ||
|  | 			 TF = VBYI(VADD(Tv, TE)); | ||
|  | 			 TH = VBYI(VSUB(TE, Tv)); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TS, TW, TV, TX; | ||
|  | 		    { | ||
|  | 			 V TQ, TR, TT, TU; | ||
|  | 			 TQ = VADD(T1, T6); | ||
|  | 			 TR = VADD(T9, Te); | ||
|  | 			 TS = VSUB(TQ, TR); | ||
|  | 			 TW = VADD(TQ, TR); | ||
|  | 			 TT = VADD(Tx, Ty); | ||
|  | 			 TU = VADD(TB, TC); | ||
|  | 			 TV = VBYI(VSUB(TT, TU)); | ||
|  | 			 TX = VADD(TT, TU); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[0]), VADD(TW, TX), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TK, TO, TN, TP; | ||
|  | 		    { | ||
|  | 			 V TI, TJ, TL, TM; | ||
|  | 			 TI = VADD(Tl, Tq); | ||
|  | 			 TJ = VADD(Tt, Tu); | ||
|  | 			 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); | ||
|  | 			 TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); | ||
|  | 			 TL = VADD(T7, Tf); | ||
|  | 			 TM = VADD(Tz, TD); | ||
|  | 			 TN = VSUB(TL, TM); | ||
|  | 			 TP = VADD(TL, TM); | ||
|  | 		    } | ||
|  | 		    ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      VTW(0, 5), | ||
|  |      VTW(0, 6), | ||
|  |      VTW(0, 7), | ||
|  |      VTW(0, 8), | ||
|  |      VTW(0, 9), | ||
|  |      VTW(0, 10), | ||
|  |      VTW(0, 11), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, { 55, 26, 4, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t1bv_12) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1bv_12, &desc); | ||
|  | } | ||
|  | #endif
 |