598 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			598 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:50 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 118 FP additions, 68 FP multiplications, | ||
|  |  * (or, 72 additions, 22 multiplications, 46 fused multiply/add), | ||
|  |  * 47 stack variables, 2 constants, and 48 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       E T18, T20, T1b, T21, T1s, T2a, T1p, T29, TI, TN, TO, Tb, To, T1f, T23; | ||
|  | 	       E T1i, T24, T1z, T2d, T1w, T2c, Tt, Ty, Tz, Tm, TD; | ||
|  | 	       { | ||
|  | 		    E T1, TE, TM, T6, T4, T1o, TH, T17, TL, T1a, T9, T1r; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    TE = ci[WS(rs, 11)]; | ||
|  | 		    TM = cr[WS(rs, 6)]; | ||
|  | 		    T6 = ci[WS(rs, 5)]; | ||
|  | 		    { | ||
|  | 			 E T2, T3, TF, TG; | ||
|  | 			 T2 = cr[WS(rs, 4)]; | ||
|  | 			 T3 = ci[WS(rs, 3)]; | ||
|  | 			 T4 = T2 + T3; | ||
|  | 			 T1o = T2 - T3; | ||
|  | 			 TF = ci[WS(rs, 7)]; | ||
|  | 			 TG = cr[WS(rs, 8)]; | ||
|  | 			 TH = TF - TG; | ||
|  | 			 T17 = TF + TG; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TJ, TK, T7, T8; | ||
|  | 			 TJ = ci[WS(rs, 9)]; | ||
|  | 			 TK = cr[WS(rs, 10)]; | ||
|  | 			 TL = TJ - TK; | ||
|  | 			 T1a = TJ + TK; | ||
|  | 			 T7 = ci[WS(rs, 1)]; | ||
|  | 			 T8 = cr[WS(rs, 2)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 T1r = T7 - T8; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T16, T19, T1q, T1n, T5, Ta; | ||
|  | 			 T16 = FNMS(KP500000000, T4, T1); | ||
|  | 			 T18 = FNMS(KP866025403, T17, T16); | ||
|  | 			 T20 = FMA(KP866025403, T17, T16); | ||
|  | 			 T19 = FNMS(KP500000000, T9, T6); | ||
|  | 			 T1b = FMA(KP866025403, T1a, T19); | ||
|  | 			 T21 = FNMS(KP866025403, T1a, T19); | ||
|  | 			 T1q = FMA(KP500000000, TL, TM); | ||
|  | 			 T1s = FNMS(KP866025403, T1r, T1q); | ||
|  | 			 T2a = FMA(KP866025403, T1r, T1q); | ||
|  | 			 T1n = FNMS(KP500000000, TH, TE); | ||
|  | 			 T1p = FMA(KP866025403, T1o, T1n); | ||
|  | 			 T29 = FNMS(KP866025403, T1o, T1n); | ||
|  | 			 TI = TE + TH; | ||
|  | 			 TN = TL - TM; | ||
|  | 			 TO = TI - TN; | ||
|  | 			 T5 = T1 + T4; | ||
|  | 			 Ta = T6 + T9; | ||
|  | 			 Tb = T5 + Ta; | ||
|  | 			 To = T5 - Ta; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, Tp, Tx, Th, Tf, T1v, Ts, T1e, Tw, T1h, Tk, T1y; | ||
|  | 		    Tc = cr[WS(rs, 3)]; | ||
|  | 		    Tp = ci[WS(rs, 8)]; | ||
|  | 		    Tx = cr[WS(rs, 9)]; | ||
|  | 		    Th = ci[WS(rs, 2)]; | ||
|  | 		    { | ||
|  | 			 E Td, Te, Tq, Tr; | ||
|  | 			 Td = ci[WS(rs, 4)]; | ||
|  | 			 Te = ci[0]; | ||
|  | 			 Tf = Td + Te; | ||
|  | 			 T1v = Td - Te; | ||
|  | 			 Tq = cr[WS(rs, 7)]; | ||
|  | 			 Tr = cr[WS(rs, 11)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T1e = Tq - Tr; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, Tv, Ti, Tj; | ||
|  | 			 Tu = ci[WS(rs, 10)]; | ||
|  | 			 Tv = ci[WS(rs, 6)]; | ||
|  | 			 Tw = Tu + Tv; | ||
|  | 			 T1h = Tv - Tu; | ||
|  | 			 Ti = cr[WS(rs, 1)]; | ||
|  | 			 Tj = cr[WS(rs, 5)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 T1y = Ti - Tj; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1d, T1g, T1x, T1u, Tg, Tl; | ||
|  | 			 T1d = FNMS(KP500000000, Tf, Tc); | ||
|  | 			 T1f = FMA(KP866025403, T1e, T1d); | ||
|  | 			 T23 = FNMS(KP866025403, T1e, T1d); | ||
|  | 			 T1g = FNMS(KP500000000, Tk, Th); | ||
|  | 			 T1i = FMA(KP866025403, T1h, T1g); | ||
|  | 			 T24 = FNMS(KP866025403, T1h, T1g); | ||
|  | 			 T1x = FMA(KP500000000, Tw, Tx); | ||
|  | 			 T1z = FNMS(KP866025403, T1y, T1x); | ||
|  | 			 T2d = FMA(KP866025403, T1y, T1x); | ||
|  | 			 T1u = FMA(KP500000000, Ts, Tp); | ||
|  | 			 T1w = FMA(KP866025403, T1v, T1u); | ||
|  | 			 T2c = FNMS(KP866025403, T1v, T1u); | ||
|  | 			 Tt = Tp - Ts; | ||
|  | 			 Ty = Tw - Tx; | ||
|  | 			 Tz = Tt - Ty; | ||
|  | 			 Tg = Tc + Tf; | ||
|  | 			 Tl = Th + Tk; | ||
|  | 			 Tm = Tg + Tl; | ||
|  | 			 TD = Tg - Tl; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       cr[0] = Tb + Tm; | ||
|  | 	       { | ||
|  | 		    E TA, TP, TB, TQ, Tn, TC; | ||
|  | 		    TA = To - Tz; | ||
|  | 		    TP = TD + TO; | ||
|  | 		    Tn = W[16]; | ||
|  | 		    TB = Tn * TA; | ||
|  | 		    TQ = Tn * TP; | ||
|  | 		    TC = W[17]; | ||
|  | 		    cr[WS(rs, 9)] = FNMS(TC, TP, TB); | ||
|  | 		    ci[WS(rs, 9)] = FMA(TC, TA, TQ); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TS, TV, TT, TW, TR, TU; | ||
|  | 		    TS = To + Tz; | ||
|  | 		    TV = TO - TD; | ||
|  | 		    TR = W[4]; | ||
|  | 		    TT = TR * TS; | ||
|  | 		    TW = TR * TV; | ||
|  | 		    TU = W[5]; | ||
|  | 		    cr[WS(rs, 3)] = FNMS(TU, TV, TT); | ||
|  | 		    ci[WS(rs, 3)] = FMA(TU, TS, TW); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T11, T12, T13, TX, TZ, T10, T14, TY; | ||
|  | 		    T11 = TI + TN; | ||
|  | 		    T12 = Tt + Ty; | ||
|  | 		    T13 = T11 - T12; | ||
|  | 		    TY = Tb - Tm; | ||
|  | 		    TX = W[10]; | ||
|  | 		    TZ = TX * TY; | ||
|  | 		    T10 = W[11]; | ||
|  | 		    T14 = T10 * TY; | ||
|  | 		    ci[0] = T11 + T12; | ||
|  | 		    ci[WS(rs, 6)] = FMA(TX, T13, T14); | ||
|  | 		    cr[WS(rs, 6)] = FNMS(T10, T13, TZ); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1k, T1E, T1B, T1H; | ||
|  | 		    { | ||
|  | 			 E T1c, T1j, T1t, T1A; | ||
|  | 			 T1c = T18 + T1b; | ||
|  | 			 T1j = T1f + T1i; | ||
|  | 			 T1k = T1c - T1j; | ||
|  | 			 T1E = T1c + T1j; | ||
|  | 			 T1t = T1p - T1s; | ||
|  | 			 T1A = T1w - T1z; | ||
|  | 			 T1B = T1t - T1A; | ||
|  | 			 T1H = T1t + T1A; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T15, T1l, T1m, T1C; | ||
|  | 			 T15 = W[18]; | ||
|  | 			 T1l = T15 * T1k; | ||
|  | 			 T1m = W[19]; | ||
|  | 			 T1C = T1m * T1k; | ||
|  | 			 cr[WS(rs, 10)] = FNMS(T1m, T1B, T1l); | ||
|  | 			 ci[WS(rs, 10)] = FMA(T15, T1B, T1C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1D, T1F, T1G, T1I; | ||
|  | 			 T1D = W[6]; | ||
|  | 			 T1F = T1D * T1E; | ||
|  | 			 T1G = W[7]; | ||
|  | 			 T1I = T1G * T1E; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(T1G, T1H, T1F); | ||
|  | 			 ci[WS(rs, 4)] = FMA(T1D, T1H, T1I); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T26, T2i, T2f, T2l; | ||
|  | 		    { | ||
|  | 			 E T22, T25, T2b, T2e; | ||
|  | 			 T22 = T20 + T21; | ||
|  | 			 T25 = T23 + T24; | ||
|  | 			 T26 = T22 - T25; | ||
|  | 			 T2i = T22 + T25; | ||
|  | 			 T2b = T29 - T2a; | ||
|  | 			 T2e = T2c - T2d; | ||
|  | 			 T2f = T2b - T2e; | ||
|  | 			 T2l = T2b + T2e; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1Z, T27, T28, T2g; | ||
|  | 			 T1Z = W[2]; | ||
|  | 			 T27 = T1Z * T26; | ||
|  | 			 T28 = W[3]; | ||
|  | 			 T2g = T28 * T26; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(T28, T2f, T27); | ||
|  | 			 ci[WS(rs, 2)] = FMA(T1Z, T2f, T2g); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2h, T2j, T2k, T2m; | ||
|  | 			 T2h = W[14]; | ||
|  | 			 T2j = T2h * T2i; | ||
|  | 			 T2k = W[15]; | ||
|  | 			 T2m = T2k * T2i; | ||
|  | 			 cr[WS(rs, 8)] = FNMS(T2k, T2l, T2j); | ||
|  | 			 ci[WS(rs, 8)] = FMA(T2h, T2l, T2m); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2q, T2y, T2v, T2B; | ||
|  | 		    { | ||
|  | 			 E T2o, T2p, T2t, T2u; | ||
|  | 			 T2o = T20 - T21; | ||
|  | 			 T2p = T2c + T2d; | ||
|  | 			 T2q = T2o - T2p; | ||
|  | 			 T2y = T2o + T2p; | ||
|  | 			 T2t = T29 + T2a; | ||
|  | 			 T2u = T23 - T24; | ||
|  | 			 T2v = T2t + T2u; | ||
|  | 			 T2B = T2t - T2u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2r, T2w, T2n, T2s; | ||
|  | 			 T2n = W[8]; | ||
|  | 			 T2r = T2n * T2q; | ||
|  | 			 T2w = T2n * T2v; | ||
|  | 			 T2s = W[9]; | ||
|  | 			 cr[WS(rs, 5)] = FNMS(T2s, T2v, T2r); | ||
|  | 			 ci[WS(rs, 5)] = FMA(T2s, T2q, T2w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2z, T2C, T2x, T2A; | ||
|  | 			 T2x = W[20]; | ||
|  | 			 T2z = T2x * T2y; | ||
|  | 			 T2C = T2x * T2B; | ||
|  | 			 T2A = W[21]; | ||
|  | 			 cr[WS(rs, 11)] = FNMS(T2A, T2B, T2z); | ||
|  | 			 ci[WS(rs, 11)] = FMA(T2A, T2y, T2C); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1M, T1U, T1R, T1X; | ||
|  | 		    { | ||
|  | 			 E T1K, T1L, T1P, T1Q; | ||
|  | 			 T1K = T18 - T1b; | ||
|  | 			 T1L = T1w + T1z; | ||
|  | 			 T1M = T1K - T1L; | ||
|  | 			 T1U = T1K + T1L; | ||
|  | 			 T1P = T1p + T1s; | ||
|  | 			 T1Q = T1f - T1i; | ||
|  | 			 T1R = T1P + T1Q; | ||
|  | 			 T1X = T1P - T1Q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1N, T1S, T1J, T1O; | ||
|  | 			 T1J = W[0]; | ||
|  | 			 T1N = T1J * T1M; | ||
|  | 			 T1S = T1J * T1R; | ||
|  | 			 T1O = W[1]; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(T1O, T1R, T1N); | ||
|  | 			 ci[WS(rs, 1)] = FMA(T1O, T1M, T1S); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1V, T1Y, T1T, T1W; | ||
|  | 			 T1T = W[12]; | ||
|  | 			 T1V = T1T * T1U; | ||
|  | 			 T1Y = T1T * T1X; | ||
|  | 			 T1W = W[13]; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(T1W, T1X, T1V); | ||
|  | 			 ci[WS(rs, 7)] = FMA(T1W, T1U, T1Y); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 12 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, { 72, 22, 46, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_12) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_12, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hb_12 -include rdft/scalar/hb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 118 FP additions, 60 FP multiplications, | ||
|  |  * (or, 88 additions, 30 multiplications, 30 fused multiply/add), | ||
|  |  * 39 stack variables, 2 constants, and 48 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hb.h"
 | ||
|  | 
 | ||
|  | static void hb_12(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       E T5, TH, T12, T1M, T1i, T1U, Tg, Tt, T19, T1X, T1p, T1P, Ta, TM, T15; | ||
|  | 	       E T1N, T1l, T1V, Tl, Ty, T1c, T1Y, T1s, T1Q; | ||
|  | 	       { | ||
|  | 		    E T1, TD, T4, T1g, TG, T11, T10, T1h; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    TD = ci[WS(rs, 11)]; | ||
|  | 		    { | ||
|  | 			 E T2, T3, TE, TF; | ||
|  | 			 T2 = cr[WS(rs, 4)]; | ||
|  | 			 T3 = ci[WS(rs, 3)]; | ||
|  | 			 T4 = T2 + T3; | ||
|  | 			 T1g = KP866025403 * (T2 - T3); | ||
|  | 			 TE = ci[WS(rs, 7)]; | ||
|  | 			 TF = cr[WS(rs, 8)]; | ||
|  | 			 TG = TE - TF; | ||
|  | 			 T11 = KP866025403 * (TE + TF); | ||
|  | 		    } | ||
|  | 		    T5 = T1 + T4; | ||
|  | 		    TH = TD + TG; | ||
|  | 		    T10 = FNMS(KP500000000, T4, T1); | ||
|  | 		    T12 = T10 - T11; | ||
|  | 		    T1M = T10 + T11; | ||
|  | 		    T1h = FNMS(KP500000000, TG, TD); | ||
|  | 		    T1i = T1g + T1h; | ||
|  | 		    T1U = T1h - T1g; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n; | ||
|  | 		    Tc = cr[WS(rs, 3)]; | ||
|  | 		    Tp = ci[WS(rs, 8)]; | ||
|  | 		    { | ||
|  | 			 E Td, Te, Tq, Tr; | ||
|  | 			 Td = ci[WS(rs, 4)]; | ||
|  | 			 Te = ci[0]; | ||
|  | 			 Tf = Td + Te; | ||
|  | 			 T17 = KP866025403 * (Td - Te); | ||
|  | 			 Tq = cr[WS(rs, 7)]; | ||
|  | 			 Tr = cr[WS(rs, 11)]; | ||
|  | 			 Ts = Tq + Tr; | ||
|  | 			 T1o = KP866025403 * (Tq - Tr); | ||
|  | 		    } | ||
|  | 		    Tg = Tc + Tf; | ||
|  | 		    Tt = Tp - Ts; | ||
|  | 		    T18 = FMA(KP500000000, Ts, Tp); | ||
|  | 		    T19 = T17 + T18; | ||
|  | 		    T1X = T18 - T17; | ||
|  | 		    T1n = FNMS(KP500000000, Tf, Tc); | ||
|  | 		    T1p = T1n + T1o; | ||
|  | 		    T1P = T1n - T1o; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, TL, T9, T1j, TK, T14, T13, T1k; | ||
|  | 		    T6 = ci[WS(rs, 5)]; | ||
|  | 		    TL = cr[WS(rs, 6)]; | ||
|  | 		    { | ||
|  | 			 E T7, T8, TI, TJ; | ||
|  | 			 T7 = ci[WS(rs, 1)]; | ||
|  | 			 T8 = cr[WS(rs, 2)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 T1j = KP866025403 * (T7 - T8); | ||
|  | 			 TI = ci[WS(rs, 9)]; | ||
|  | 			 TJ = cr[WS(rs, 10)]; | ||
|  | 			 TK = TI - TJ; | ||
|  | 			 T14 = KP866025403 * (TI + TJ); | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    TM = TK - TL; | ||
|  | 		    T13 = FNMS(KP500000000, T9, T6); | ||
|  | 		    T15 = T13 + T14; | ||
|  | 		    T1N = T13 - T14; | ||
|  | 		    T1k = FMA(KP500000000, TK, TL); | ||
|  | 		    T1l = T1j - T1k; | ||
|  | 		    T1V = T1j + T1k; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q; | ||
|  | 		    Th = ci[WS(rs, 2)]; | ||
|  | 		    Tx = cr[WS(rs, 9)]; | ||
|  | 		    { | ||
|  | 			 E Ti, Tj, Tu, Tv; | ||
|  | 			 Ti = cr[WS(rs, 1)]; | ||
|  | 			 Tj = cr[WS(rs, 5)]; | ||
|  | 			 Tk = Ti + Tj; | ||
|  | 			 T1a = KP866025403 * (Ti - Tj); | ||
|  | 			 Tu = ci[WS(rs, 10)]; | ||
|  | 			 Tv = ci[WS(rs, 6)]; | ||
|  | 			 Tw = Tu + Tv; | ||
|  | 			 T1r = KP866025403 * (Tv - Tu); | ||
|  | 		    } | ||
|  | 		    Tl = Th + Tk; | ||
|  | 		    Ty = Tw - Tx; | ||
|  | 		    T1b = FMA(KP500000000, Tw, Tx); | ||
|  | 		    T1c = T1a - T1b; | ||
|  | 		    T1Y = T1a + T1b; | ||
|  | 		    T1q = FNMS(KP500000000, Tk, Th); | ||
|  | 		    T1s = T1q + T1r; | ||
|  | 		    T1Q = T1q - T1r; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tb, Tm, TU, TW, TX, TY, TT, TV; | ||
|  | 		    Tb = T5 + Ta; | ||
|  | 		    Tm = Tg + Tl; | ||
|  | 		    TU = Tb - Tm; | ||
|  | 		    TW = TH + TM; | ||
|  | 		    TX = Tt + Ty; | ||
|  | 		    TY = TW - TX; | ||
|  | 		    cr[0] = Tb + Tm; | ||
|  | 		    ci[0] = TW + TX; | ||
|  | 		    TT = W[10]; | ||
|  | 		    TV = W[11]; | ||
|  | 		    cr[WS(rs, 6)] = FNMS(TV, TY, TT * TU); | ||
|  | 		    ci[WS(rs, 6)] = FMA(TV, TU, TT * TY); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TA, TQ, TO, TS; | ||
|  | 		    { | ||
|  | 			 E To, Tz, TC, TN; | ||
|  | 			 To = T5 - Ta; | ||
|  | 			 Tz = Tt - Ty; | ||
|  | 			 TA = To - Tz; | ||
|  | 			 TQ = To + Tz; | ||
|  | 			 TC = Tg - Tl; | ||
|  | 			 TN = TH - TM; | ||
|  | 			 TO = TC + TN; | ||
|  | 			 TS = TN - TC; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tn, TB, TP, TR; | ||
|  | 			 Tn = W[16]; | ||
|  | 			 TB = W[17]; | ||
|  | 			 cr[WS(rs, 9)] = FNMS(TB, TO, Tn * TA); | ||
|  | 			 ci[WS(rs, 9)] = FMA(Tn, TO, TB * TA); | ||
|  | 			 TP = W[4]; | ||
|  | 			 TR = W[5]; | ||
|  | 			 cr[WS(rs, 3)] = FNMS(TR, TS, TP * TQ); | ||
|  | 			 ci[WS(rs, 3)] = FMA(TP, TS, TR * TQ); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T28, T2e, T2c, T2g; | ||
|  | 		    { | ||
|  | 			 E T26, T27, T2a, T2b; | ||
|  | 			 T26 = T1M - T1N; | ||
|  | 			 T27 = T1X + T1Y; | ||
|  | 			 T28 = T26 - T27; | ||
|  | 			 T2e = T26 + T27; | ||
|  | 			 T2a = T1U + T1V; | ||
|  | 			 T2b = T1P - T1Q; | ||
|  | 			 T2c = T2a + T2b; | ||
|  | 			 T2g = T2a - T2b; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T25, T29, T2d, T2f; | ||
|  | 			 T25 = W[8]; | ||
|  | 			 T29 = W[9]; | ||
|  | 			 cr[WS(rs, 5)] = FNMS(T29, T2c, T25 * T28); | ||
|  | 			 ci[WS(rs, 5)] = FMA(T25, T2c, T29 * T28); | ||
|  | 			 T2d = W[20]; | ||
|  | 			 T2f = W[21]; | ||
|  | 			 cr[WS(rs, 11)] = FNMS(T2f, T2g, T2d * T2e); | ||
|  | 			 ci[WS(rs, 11)] = FMA(T2d, T2g, T2f * T2e); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1S, T22, T20, T24; | ||
|  | 		    { | ||
|  | 			 E T1O, T1R, T1W, T1Z; | ||
|  | 			 T1O = T1M + T1N; | ||
|  | 			 T1R = T1P + T1Q; | ||
|  | 			 T1S = T1O - T1R; | ||
|  | 			 T22 = T1O + T1R; | ||
|  | 			 T1W = T1U - T1V; | ||
|  | 			 T1Z = T1X - T1Y; | ||
|  | 			 T20 = T1W - T1Z; | ||
|  | 			 T24 = T1W + T1Z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1L, T1T, T21, T23; | ||
|  | 			 T1L = W[2]; | ||
|  | 			 T1T = W[3]; | ||
|  | 			 cr[WS(rs, 2)] = FNMS(T1T, T20, T1L * T1S); | ||
|  | 			 ci[WS(rs, 2)] = FMA(T1T, T1S, T1L * T20); | ||
|  | 			 T21 = W[14]; | ||
|  | 			 T23 = W[15]; | ||
|  | 			 cr[WS(rs, 8)] = FNMS(T23, T24, T21 * T22); | ||
|  | 			 ci[WS(rs, 8)] = FMA(T23, T22, T21 * T24); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1C, T1I, T1G, T1K; | ||
|  | 		    { | ||
|  | 			 E T1A, T1B, T1E, T1F; | ||
|  | 			 T1A = T12 + T15; | ||
|  | 			 T1B = T1p + T1s; | ||
|  | 			 T1C = T1A - T1B; | ||
|  | 			 T1I = T1A + T1B; | ||
|  | 			 T1E = T1i + T1l; | ||
|  | 			 T1F = T19 + T1c; | ||
|  | 			 T1G = T1E - T1F; | ||
|  | 			 T1K = T1E + T1F; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1z, T1D, T1H, T1J; | ||
|  | 			 T1z = W[18]; | ||
|  | 			 T1D = W[19]; | ||
|  | 			 cr[WS(rs, 10)] = FNMS(T1D, T1G, T1z * T1C); | ||
|  | 			 ci[WS(rs, 10)] = FMA(T1D, T1C, T1z * T1G); | ||
|  | 			 T1H = W[6]; | ||
|  | 			 T1J = W[7]; | ||
|  | 			 cr[WS(rs, 4)] = FNMS(T1J, T1K, T1H * T1I); | ||
|  | 			 ci[WS(rs, 4)] = FMA(T1J, T1I, T1H * T1K); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, T1w, T1u, T1y; | ||
|  | 		    { | ||
|  | 			 E T16, T1d, T1m, T1t; | ||
|  | 			 T16 = T12 - T15; | ||
|  | 			 T1d = T19 - T1c; | ||
|  | 			 T1e = T16 - T1d; | ||
|  | 			 T1w = T16 + T1d; | ||
|  | 			 T1m = T1i - T1l; | ||
|  | 			 T1t = T1p - T1s; | ||
|  | 			 T1u = T1m + T1t; | ||
|  | 			 T1y = T1m - T1t; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TZ, T1f, T1v, T1x; | ||
|  | 			 TZ = W[0]; | ||
|  | 			 T1f = W[1]; | ||
|  | 			 cr[WS(rs, 1)] = FNMS(T1f, T1u, TZ * T1e); | ||
|  | 			 ci[WS(rs, 1)] = FMA(TZ, T1u, T1f * T1e); | ||
|  | 			 T1v = W[12]; | ||
|  | 			 T1x = W[13]; | ||
|  | 			 cr[WS(rs, 7)] = FNMS(T1x, T1y, T1v * T1w); | ||
|  | 			 ci[WS(rs, 7)] = FMA(T1v, T1y, T1x * T1w); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 12 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 12, "hb_12", twinstr, &GENUS, { 88, 30, 30, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hb_12) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hb_12, &desc); | ||
|  | } | ||
|  | #endif
 |