2356 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			2356 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:44:41 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 528 FP additions, 288 FP multiplications, | ||
|  |  * (or, 352 additions, 112 multiplications, 176 fused multiply/add), | ||
|  |  * 152 stack variables, 1 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/q.h"
 | ||
|  | 
 | ||
|  | static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | ||
|  | 	       E T7, T1d, T1t, Tk, TD, TV, T18, TQ, T4F, T5L, T61, T4S, T5b, T5t, T5G; | ||
|  | 	       E T5o, T6b, T7h, T7x, T6o, T6H, T6Z, T7c, T6U, TaJ, TbP, Tc5, TaW, Tbf, Tbx; | ||
|  | 	       E TbK, Tbs, T1D, T2J, T2Z, T1Q, T29, T2r, T2E, T2m, T39, T4f, T4v, T3m, T3F; | ||
|  | 	       E T3X, T4a, T3S, T7H, T8N, T93, T7U, T8d, T8v, T8I, T8q, T9d, Taj, Taz, T9q; | ||
|  | 	       E T9J, Ta1, Tae, T9W, Te, T19, T1u, T1g, TE, TF, TW, Tv, TR, T4M, T5H; | ||
|  | 	       E T62, T5O, T5c, T5d, T5u, T53, T5p, T6i, T7d, T7y, T7k, T6I, T6J, T70, T6z; | ||
|  | 	       E T6V, TaQ, TbL, Tc6, TbS, Tbg, Tbh, Tby, Tb7, Tbt, T1K, T2F, T30, T2M, T2a; | ||
|  | 	       E T2b, T2s, T21, T2n, T3g, T4b, T4w, T4i, T3G, T3H, T3Y, T3x, T3T, T7O, T8J; | ||
|  | 	       E T94, T8Q, T8e, T8f, T8w, T85, T8r, T9k, Taf, TaA, Tam, T9K, T9L, Ta2, T9B; | ||
|  | 	       E T9X; | ||
|  | 	       { | ||
|  | 		    E T3, Tz, Tj, T16, T6, Tg, TC, T17; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Th, Ti; | ||
|  | 			 T1 = rio[0]; | ||
|  | 			 T2 = rio[WS(rs, 4)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 Tz = T1 - T2; | ||
|  | 			 Th = iio[0]; | ||
|  | 			 Ti = iio[WS(rs, 4)]; | ||
|  | 			 Tj = Th - Ti; | ||
|  | 			 T16 = Th + Ti; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, TA, TB; | ||
|  | 			 T4 = rio[WS(rs, 2)]; | ||
|  | 			 T5 = rio[WS(rs, 6)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 Tg = T4 - T5; | ||
|  | 			 TA = iio[WS(rs, 2)]; | ||
|  | 			 TB = iio[WS(rs, 6)]; | ||
|  | 			 TC = TA - TB; | ||
|  | 			 T17 = TA + TB; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T1d = T3 - T6; | ||
|  | 		    T1t = T16 + T17; | ||
|  | 		    Tk = Tg + Tj; | ||
|  | 		    TD = Tz - TC; | ||
|  | 		    TV = Tj - Tg; | ||
|  | 		    T18 = T16 - T17; | ||
|  | 		    TQ = Tz + TC; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4B, T57, T4R, T5E, T4E, T4O, T5a, T5F; | ||
|  | 		    { | ||
|  | 			 E T4z, T4A, T4P, T4Q; | ||
|  | 			 T4z = rio[WS(vs, 3)]; | ||
|  | 			 T4A = rio[WS(vs, 3) + WS(rs, 4)]; | ||
|  | 			 T4B = T4z + T4A; | ||
|  | 			 T57 = T4z - T4A; | ||
|  | 			 T4P = iio[WS(vs, 3)]; | ||
|  | 			 T4Q = iio[WS(vs, 3) + WS(rs, 4)]; | ||
|  | 			 T4R = T4P - T4Q; | ||
|  | 			 T5E = T4P + T4Q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4C, T4D, T58, T59; | ||
|  | 			 T4C = rio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 			 T4D = rio[WS(vs, 3) + WS(rs, 6)]; | ||
|  | 			 T4E = T4C + T4D; | ||
|  | 			 T4O = T4C - T4D; | ||
|  | 			 T58 = iio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 			 T59 = iio[WS(vs, 3) + WS(rs, 6)]; | ||
|  | 			 T5a = T58 - T59; | ||
|  | 			 T5F = T58 + T59; | ||
|  | 		    } | ||
|  | 		    T4F = T4B + T4E; | ||
|  | 		    T5L = T4B - T4E; | ||
|  | 		    T61 = T5E + T5F; | ||
|  | 		    T4S = T4O + T4R; | ||
|  | 		    T5b = T57 - T5a; | ||
|  | 		    T5t = T4R - T4O; | ||
|  | 		    T5G = T5E - T5F; | ||
|  | 		    T5o = T57 + T5a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T67, T6D, T6n, T7a, T6a, T6k, T6G, T7b; | ||
|  | 		    { | ||
|  | 			 E T65, T66, T6l, T6m; | ||
|  | 			 T65 = rio[WS(vs, 4)]; | ||
|  | 			 T66 = rio[WS(vs, 4) + WS(rs, 4)]; | ||
|  | 			 T67 = T65 + T66; | ||
|  | 			 T6D = T65 - T66; | ||
|  | 			 T6l = iio[WS(vs, 4)]; | ||
|  | 			 T6m = iio[WS(vs, 4) + WS(rs, 4)]; | ||
|  | 			 T6n = T6l - T6m; | ||
|  | 			 T7a = T6l + T6m; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T68, T69, T6E, T6F; | ||
|  | 			 T68 = rio[WS(vs, 4) + WS(rs, 2)]; | ||
|  | 			 T69 = rio[WS(vs, 4) + WS(rs, 6)]; | ||
|  | 			 T6a = T68 + T69; | ||
|  | 			 T6k = T68 - T69; | ||
|  | 			 T6E = iio[WS(vs, 4) + WS(rs, 2)]; | ||
|  | 			 T6F = iio[WS(vs, 4) + WS(rs, 6)]; | ||
|  | 			 T6G = T6E - T6F; | ||
|  | 			 T7b = T6E + T6F; | ||
|  | 		    } | ||
|  | 		    T6b = T67 + T6a; | ||
|  | 		    T7h = T67 - T6a; | ||
|  | 		    T7x = T7a + T7b; | ||
|  | 		    T6o = T6k + T6n; | ||
|  | 		    T6H = T6D - T6G; | ||
|  | 		    T6Z = T6n - T6k; | ||
|  | 		    T7c = T7a - T7b; | ||
|  | 		    T6U = T6D + T6G; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TaF, Tbb, TaV, TbI, TaI, TaS, Tbe, TbJ; | ||
|  | 		    { | ||
|  | 			 E TaD, TaE, TaT, TaU; | ||
|  | 			 TaD = rio[WS(vs, 7)]; | ||
|  | 			 TaE = rio[WS(vs, 7) + WS(rs, 4)]; | ||
|  | 			 TaF = TaD + TaE; | ||
|  | 			 Tbb = TaD - TaE; | ||
|  | 			 TaT = iio[WS(vs, 7)]; | ||
|  | 			 TaU = iio[WS(vs, 7) + WS(rs, 4)]; | ||
|  | 			 TaV = TaT - TaU; | ||
|  | 			 TbI = TaT + TaU; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaG, TaH, Tbc, Tbd; | ||
|  | 			 TaG = rio[WS(vs, 7) + WS(rs, 2)]; | ||
|  | 			 TaH = rio[WS(vs, 7) + WS(rs, 6)]; | ||
|  | 			 TaI = TaG + TaH; | ||
|  | 			 TaS = TaG - TaH; | ||
|  | 			 Tbc = iio[WS(vs, 7) + WS(rs, 2)]; | ||
|  | 			 Tbd = iio[WS(vs, 7) + WS(rs, 6)]; | ||
|  | 			 Tbe = Tbc - Tbd; | ||
|  | 			 TbJ = Tbc + Tbd; | ||
|  | 		    } | ||
|  | 		    TaJ = TaF + TaI; | ||
|  | 		    TbP = TaF - TaI; | ||
|  | 		    Tc5 = TbI + TbJ; | ||
|  | 		    TaW = TaS + TaV; | ||
|  | 		    Tbf = Tbb - Tbe; | ||
|  | 		    Tbx = TaV - TaS; | ||
|  | 		    TbK = TbI - TbJ; | ||
|  | 		    Tbs = Tbb + Tbe; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1z, T25, T1P, T2C, T1C, T1M, T28, T2D; | ||
|  | 		    { | ||
|  | 			 E T1x, T1y, T1N, T1O; | ||
|  | 			 T1x = rio[WS(vs, 1)]; | ||
|  | 			 T1y = rio[WS(vs, 1) + WS(rs, 4)]; | ||
|  | 			 T1z = T1x + T1y; | ||
|  | 			 T25 = T1x - T1y; | ||
|  | 			 T1N = iio[WS(vs, 1)]; | ||
|  | 			 T1O = iio[WS(vs, 1) + WS(rs, 4)]; | ||
|  | 			 T1P = T1N - T1O; | ||
|  | 			 T2C = T1N + T1O; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1A, T1B, T26, T27; | ||
|  | 			 T1A = rio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 T1B = rio[WS(vs, 1) + WS(rs, 6)]; | ||
|  | 			 T1C = T1A + T1B; | ||
|  | 			 T1M = T1A - T1B; | ||
|  | 			 T26 = iio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 T27 = iio[WS(vs, 1) + WS(rs, 6)]; | ||
|  | 			 T28 = T26 - T27; | ||
|  | 			 T2D = T26 + T27; | ||
|  | 		    } | ||
|  | 		    T1D = T1z + T1C; | ||
|  | 		    T2J = T1z - T1C; | ||
|  | 		    T2Z = T2C + T2D; | ||
|  | 		    T1Q = T1M + T1P; | ||
|  | 		    T29 = T25 - T28; | ||
|  | 		    T2r = T1P - T1M; | ||
|  | 		    T2E = T2C - T2D; | ||
|  | 		    T2m = T25 + T28; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T35, T3B, T3l, T48, T38, T3i, T3E, T49; | ||
|  | 		    { | ||
|  | 			 E T33, T34, T3j, T3k; | ||
|  | 			 T33 = rio[WS(vs, 2)]; | ||
|  | 			 T34 = rio[WS(vs, 2) + WS(rs, 4)]; | ||
|  | 			 T35 = T33 + T34; | ||
|  | 			 T3B = T33 - T34; | ||
|  | 			 T3j = iio[WS(vs, 2)]; | ||
|  | 			 T3k = iio[WS(vs, 2) + WS(rs, 4)]; | ||
|  | 			 T3l = T3j - T3k; | ||
|  | 			 T48 = T3j + T3k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T36, T37, T3C, T3D; | ||
|  | 			 T36 = rio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T37 = rio[WS(vs, 2) + WS(rs, 6)]; | ||
|  | 			 T38 = T36 + T37; | ||
|  | 			 T3i = T36 - T37; | ||
|  | 			 T3C = iio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T3D = iio[WS(vs, 2) + WS(rs, 6)]; | ||
|  | 			 T3E = T3C - T3D; | ||
|  | 			 T49 = T3C + T3D; | ||
|  | 		    } | ||
|  | 		    T39 = T35 + T38; | ||
|  | 		    T4f = T35 - T38; | ||
|  | 		    T4v = T48 + T49; | ||
|  | 		    T3m = T3i + T3l; | ||
|  | 		    T3F = T3B - T3E; | ||
|  | 		    T3X = T3l - T3i; | ||
|  | 		    T4a = T48 - T49; | ||
|  | 		    T3S = T3B + T3E; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7D, T89, T7T, T8G, T7G, T7Q, T8c, T8H; | ||
|  | 		    { | ||
|  | 			 E T7B, T7C, T7R, T7S; | ||
|  | 			 T7B = rio[WS(vs, 5)]; | ||
|  | 			 T7C = rio[WS(vs, 5) + WS(rs, 4)]; | ||
|  | 			 T7D = T7B + T7C; | ||
|  | 			 T89 = T7B - T7C; | ||
|  | 			 T7R = iio[WS(vs, 5)]; | ||
|  | 			 T7S = iio[WS(vs, 5) + WS(rs, 4)]; | ||
|  | 			 T7T = T7R - T7S; | ||
|  | 			 T8G = T7R + T7S; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7E, T7F, T8a, T8b; | ||
|  | 			 T7E = rio[WS(vs, 5) + WS(rs, 2)]; | ||
|  | 			 T7F = rio[WS(vs, 5) + WS(rs, 6)]; | ||
|  | 			 T7G = T7E + T7F; | ||
|  | 			 T7Q = T7E - T7F; | ||
|  | 			 T8a = iio[WS(vs, 5) + WS(rs, 2)]; | ||
|  | 			 T8b = iio[WS(vs, 5) + WS(rs, 6)]; | ||
|  | 			 T8c = T8a - T8b; | ||
|  | 			 T8H = T8a + T8b; | ||
|  | 		    } | ||
|  | 		    T7H = T7D + T7G; | ||
|  | 		    T8N = T7D - T7G; | ||
|  | 		    T93 = T8G + T8H; | ||
|  | 		    T7U = T7Q + T7T; | ||
|  | 		    T8d = T89 - T8c; | ||
|  | 		    T8v = T7T - T7Q; | ||
|  | 		    T8I = T8G - T8H; | ||
|  | 		    T8q = T89 + T8c; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T99, T9F, T9p, Tac, T9c, T9m, T9I, Tad; | ||
|  | 		    { | ||
|  | 			 E T97, T98, T9n, T9o; | ||
|  | 			 T97 = rio[WS(vs, 6)]; | ||
|  | 			 T98 = rio[WS(vs, 6) + WS(rs, 4)]; | ||
|  | 			 T99 = T97 + T98; | ||
|  | 			 T9F = T97 - T98; | ||
|  | 			 T9n = iio[WS(vs, 6)]; | ||
|  | 			 T9o = iio[WS(vs, 6) + WS(rs, 4)]; | ||
|  | 			 T9p = T9n - T9o; | ||
|  | 			 Tac = T9n + T9o; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9a, T9b, T9G, T9H; | ||
|  | 			 T9a = rio[WS(vs, 6) + WS(rs, 2)]; | ||
|  | 			 T9b = rio[WS(vs, 6) + WS(rs, 6)]; | ||
|  | 			 T9c = T9a + T9b; | ||
|  | 			 T9m = T9a - T9b; | ||
|  | 			 T9G = iio[WS(vs, 6) + WS(rs, 2)]; | ||
|  | 			 T9H = iio[WS(vs, 6) + WS(rs, 6)]; | ||
|  | 			 T9I = T9G - T9H; | ||
|  | 			 Tad = T9G + T9H; | ||
|  | 		    } | ||
|  | 		    T9d = T99 + T9c; | ||
|  | 		    Taj = T99 - T9c; | ||
|  | 		    Taz = Tac + Tad; | ||
|  | 		    T9q = T9m + T9p; | ||
|  | 		    T9J = T9F - T9I; | ||
|  | 		    Ta1 = T9p - T9m; | ||
|  | 		    Tae = Tac - Tad; | ||
|  | 		    T9W = T9F + T9I; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, Tq, Tt, T1e, Td, Tl, To, T1f, Tp, Tu; | ||
|  | 		    { | ||
|  | 			 E T8, T9, Tr, Ts; | ||
|  | 			 T8 = rio[WS(rs, 1)]; | ||
|  | 			 T9 = rio[WS(rs, 5)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 Tq = T8 - T9; | ||
|  | 			 Tr = iio[WS(rs, 1)]; | ||
|  | 			 Ts = iio[WS(rs, 5)]; | ||
|  | 			 Tt = Tr - Ts; | ||
|  | 			 T1e = Tr + Ts; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Tm, Tn; | ||
|  | 			 Tb = rio[WS(rs, 7)]; | ||
|  | 			 Tc = rio[WS(rs, 3)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 Tl = Tb - Tc; | ||
|  | 			 Tm = iio[WS(rs, 7)]; | ||
|  | 			 Tn = iio[WS(rs, 3)]; | ||
|  | 			 To = Tm - Tn; | ||
|  | 			 T1f = Tm + Tn; | ||
|  | 		    } | ||
|  | 		    Te = Ta + Td; | ||
|  | 		    T19 = Td - Ta; | ||
|  | 		    T1u = T1e + T1f; | ||
|  | 		    T1g = T1e - T1f; | ||
|  | 		    TE = Tt - Tq; | ||
|  | 		    TF = Tl + To; | ||
|  | 		    TW = TE + TF; | ||
|  | 		    Tp = Tl - To; | ||
|  | 		    Tu = Tq + Tt; | ||
|  | 		    Tv = Tp - Tu; | ||
|  | 		    TR = Tu + Tp; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4I, T4Y, T51, T5M, T4L, T4T, T4W, T5N, T4X, T52; | ||
|  | 		    { | ||
|  | 			 E T4G, T4H, T4Z, T50; | ||
|  | 			 T4G = rio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 			 T4H = rio[WS(vs, 3) + WS(rs, 5)]; | ||
|  | 			 T4I = T4G + T4H; | ||
|  | 			 T4Y = T4G - T4H; | ||
|  | 			 T4Z = iio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 			 T50 = iio[WS(vs, 3) + WS(rs, 5)]; | ||
|  | 			 T51 = T4Z - T50; | ||
|  | 			 T5M = T4Z + T50; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4J, T4K, T4U, T4V; | ||
|  | 			 T4J = rio[WS(vs, 3) + WS(rs, 7)]; | ||
|  | 			 T4K = rio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 			 T4L = T4J + T4K; | ||
|  | 			 T4T = T4J - T4K; | ||
|  | 			 T4U = iio[WS(vs, 3) + WS(rs, 7)]; | ||
|  | 			 T4V = iio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 			 T4W = T4U - T4V; | ||
|  | 			 T5N = T4U + T4V; | ||
|  | 		    } | ||
|  | 		    T4M = T4I + T4L; | ||
|  | 		    T5H = T4L - T4I; | ||
|  | 		    T62 = T5M + T5N; | ||
|  | 		    T5O = T5M - T5N; | ||
|  | 		    T5c = T51 - T4Y; | ||
|  | 		    T5d = T4T + T4W; | ||
|  | 		    T5u = T5c + T5d; | ||
|  | 		    T4X = T4T - T4W; | ||
|  | 		    T52 = T4Y + T51; | ||
|  | 		    T53 = T4X - T52; | ||
|  | 		    T5p = T52 + T4X; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6e, T6u, T6x, T7i, T6h, T6p, T6s, T7j, T6t, T6y; | ||
|  | 		    { | ||
|  | 			 E T6c, T6d, T6v, T6w; | ||
|  | 			 T6c = rio[WS(vs, 4) + WS(rs, 1)]; | ||
|  | 			 T6d = rio[WS(vs, 4) + WS(rs, 5)]; | ||
|  | 			 T6e = T6c + T6d; | ||
|  | 			 T6u = T6c - T6d; | ||
|  | 			 T6v = iio[WS(vs, 4) + WS(rs, 1)]; | ||
|  | 			 T6w = iio[WS(vs, 4) + WS(rs, 5)]; | ||
|  | 			 T6x = T6v - T6w; | ||
|  | 			 T7i = T6v + T6w; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6f, T6g, T6q, T6r; | ||
|  | 			 T6f = rio[WS(vs, 4) + WS(rs, 7)]; | ||
|  | 			 T6g = rio[WS(vs, 4) + WS(rs, 3)]; | ||
|  | 			 T6h = T6f + T6g; | ||
|  | 			 T6p = T6f - T6g; | ||
|  | 			 T6q = iio[WS(vs, 4) + WS(rs, 7)]; | ||
|  | 			 T6r = iio[WS(vs, 4) + WS(rs, 3)]; | ||
|  | 			 T6s = T6q - T6r; | ||
|  | 			 T7j = T6q + T6r; | ||
|  | 		    } | ||
|  | 		    T6i = T6e + T6h; | ||
|  | 		    T7d = T6h - T6e; | ||
|  | 		    T7y = T7i + T7j; | ||
|  | 		    T7k = T7i - T7j; | ||
|  | 		    T6I = T6x - T6u; | ||
|  | 		    T6J = T6p + T6s; | ||
|  | 		    T70 = T6I + T6J; | ||
|  | 		    T6t = T6p - T6s; | ||
|  | 		    T6y = T6u + T6x; | ||
|  | 		    T6z = T6t - T6y; | ||
|  | 		    T6V = T6y + T6t; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TaM, Tb2, Tb5, TbQ, TaP, TaX, Tb0, TbR, Tb1, Tb6; | ||
|  | 		    { | ||
|  | 			 E TaK, TaL, Tb3, Tb4; | ||
|  | 			 TaK = rio[WS(vs, 7) + WS(rs, 1)]; | ||
|  | 			 TaL = rio[WS(vs, 7) + WS(rs, 5)]; | ||
|  | 			 TaM = TaK + TaL; | ||
|  | 			 Tb2 = TaK - TaL; | ||
|  | 			 Tb3 = iio[WS(vs, 7) + WS(rs, 1)]; | ||
|  | 			 Tb4 = iio[WS(vs, 7) + WS(rs, 5)]; | ||
|  | 			 Tb5 = Tb3 - Tb4; | ||
|  | 			 TbQ = Tb3 + Tb4; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaN, TaO, TaY, TaZ; | ||
|  | 			 TaN = rio[WS(vs, 7) + WS(rs, 7)]; | ||
|  | 			 TaO = rio[WS(vs, 7) + WS(rs, 3)]; | ||
|  | 			 TaP = TaN + TaO; | ||
|  | 			 TaX = TaN - TaO; | ||
|  | 			 TaY = iio[WS(vs, 7) + WS(rs, 7)]; | ||
|  | 			 TaZ = iio[WS(vs, 7) + WS(rs, 3)]; | ||
|  | 			 Tb0 = TaY - TaZ; | ||
|  | 			 TbR = TaY + TaZ; | ||
|  | 		    } | ||
|  | 		    TaQ = TaM + TaP; | ||
|  | 		    TbL = TaP - TaM; | ||
|  | 		    Tc6 = TbQ + TbR; | ||
|  | 		    TbS = TbQ - TbR; | ||
|  | 		    Tbg = Tb5 - Tb2; | ||
|  | 		    Tbh = TaX + Tb0; | ||
|  | 		    Tby = Tbg + Tbh; | ||
|  | 		    Tb1 = TaX - Tb0; | ||
|  | 		    Tb6 = Tb2 + Tb5; | ||
|  | 		    Tb7 = Tb1 - Tb6; | ||
|  | 		    Tbt = Tb6 + Tb1; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1G, T1W, T1Z, T2K, T1J, T1R, T1U, T2L, T1V, T20; | ||
|  | 		    { | ||
|  | 			 E T1E, T1F, T1X, T1Y; | ||
|  | 			 T1E = rio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 T1F = rio[WS(vs, 1) + WS(rs, 5)]; | ||
|  | 			 T1G = T1E + T1F; | ||
|  | 			 T1W = T1E - T1F; | ||
|  | 			 T1X = iio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 T1Y = iio[WS(vs, 1) + WS(rs, 5)]; | ||
|  | 			 T1Z = T1X - T1Y; | ||
|  | 			 T2K = T1X + T1Y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1H, T1I, T1S, T1T; | ||
|  | 			 T1H = rio[WS(vs, 1) + WS(rs, 7)]; | ||
|  | 			 T1I = rio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 			 T1J = T1H + T1I; | ||
|  | 			 T1R = T1H - T1I; | ||
|  | 			 T1S = iio[WS(vs, 1) + WS(rs, 7)]; | ||
|  | 			 T1T = iio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 			 T1U = T1S - T1T; | ||
|  | 			 T2L = T1S + T1T; | ||
|  | 		    } | ||
|  | 		    T1K = T1G + T1J; | ||
|  | 		    T2F = T1J - T1G; | ||
|  | 		    T30 = T2K + T2L; | ||
|  | 		    T2M = T2K - T2L; | ||
|  | 		    T2a = T1Z - T1W; | ||
|  | 		    T2b = T1R + T1U; | ||
|  | 		    T2s = T2a + T2b; | ||
|  | 		    T1V = T1R - T1U; | ||
|  | 		    T20 = T1W + T1Z; | ||
|  | 		    T21 = T1V - T20; | ||
|  | 		    T2n = T20 + T1V; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3c, T3s, T3v, T4g, T3f, T3n, T3q, T4h, T3r, T3w; | ||
|  | 		    { | ||
|  | 			 E T3a, T3b, T3t, T3u; | ||
|  | 			 T3a = rio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 T3b = rio[WS(vs, 2) + WS(rs, 5)]; | ||
|  | 			 T3c = T3a + T3b; | ||
|  | 			 T3s = T3a - T3b; | ||
|  | 			 T3t = iio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 T3u = iio[WS(vs, 2) + WS(rs, 5)]; | ||
|  | 			 T3v = T3t - T3u; | ||
|  | 			 T4g = T3t + T3u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3d, T3e, T3o, T3p; | ||
|  | 			 T3d = rio[WS(vs, 2) + WS(rs, 7)]; | ||
|  | 			 T3e = rio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 			 T3f = T3d + T3e; | ||
|  | 			 T3n = T3d - T3e; | ||
|  | 			 T3o = iio[WS(vs, 2) + WS(rs, 7)]; | ||
|  | 			 T3p = iio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 			 T3q = T3o - T3p; | ||
|  | 			 T4h = T3o + T3p; | ||
|  | 		    } | ||
|  | 		    T3g = T3c + T3f; | ||
|  | 		    T4b = T3f - T3c; | ||
|  | 		    T4w = T4g + T4h; | ||
|  | 		    T4i = T4g - T4h; | ||
|  | 		    T3G = T3v - T3s; | ||
|  | 		    T3H = T3n + T3q; | ||
|  | 		    T3Y = T3G + T3H; | ||
|  | 		    T3r = T3n - T3q; | ||
|  | 		    T3w = T3s + T3v; | ||
|  | 		    T3x = T3r - T3w; | ||
|  | 		    T3T = T3w + T3r; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7K, T80, T83, T8O, T7N, T7V, T7Y, T8P, T7Z, T84; | ||
|  | 		    { | ||
|  | 			 E T7I, T7J, T81, T82; | ||
|  | 			 T7I = rio[WS(vs, 5) + WS(rs, 1)]; | ||
|  | 			 T7J = rio[WS(vs, 5) + WS(rs, 5)]; | ||
|  | 			 T7K = T7I + T7J; | ||
|  | 			 T80 = T7I - T7J; | ||
|  | 			 T81 = iio[WS(vs, 5) + WS(rs, 1)]; | ||
|  | 			 T82 = iio[WS(vs, 5) + WS(rs, 5)]; | ||
|  | 			 T83 = T81 - T82; | ||
|  | 			 T8O = T81 + T82; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7L, T7M, T7W, T7X; | ||
|  | 			 T7L = rio[WS(vs, 5) + WS(rs, 7)]; | ||
|  | 			 T7M = rio[WS(vs, 5) + WS(rs, 3)]; | ||
|  | 			 T7N = T7L + T7M; | ||
|  | 			 T7V = T7L - T7M; | ||
|  | 			 T7W = iio[WS(vs, 5) + WS(rs, 7)]; | ||
|  | 			 T7X = iio[WS(vs, 5) + WS(rs, 3)]; | ||
|  | 			 T7Y = T7W - T7X; | ||
|  | 			 T8P = T7W + T7X; | ||
|  | 		    } | ||
|  | 		    T7O = T7K + T7N; | ||
|  | 		    T8J = T7N - T7K; | ||
|  | 		    T94 = T8O + T8P; | ||
|  | 		    T8Q = T8O - T8P; | ||
|  | 		    T8e = T83 - T80; | ||
|  | 		    T8f = T7V + T7Y; | ||
|  | 		    T8w = T8e + T8f; | ||
|  | 		    T7Z = T7V - T7Y; | ||
|  | 		    T84 = T80 + T83; | ||
|  | 		    T85 = T7Z - T84; | ||
|  | 		    T8r = T84 + T7Z; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9g, T9w, T9z, Tak, T9j, T9r, T9u, Tal, T9v, T9A; | ||
|  | 		    { | ||
|  | 			 E T9e, T9f, T9x, T9y; | ||
|  | 			 T9e = rio[WS(vs, 6) + WS(rs, 1)]; | ||
|  | 			 T9f = rio[WS(vs, 6) + WS(rs, 5)]; | ||
|  | 			 T9g = T9e + T9f; | ||
|  | 			 T9w = T9e - T9f; | ||
|  | 			 T9x = iio[WS(vs, 6) + WS(rs, 1)]; | ||
|  | 			 T9y = iio[WS(vs, 6) + WS(rs, 5)]; | ||
|  | 			 T9z = T9x - T9y; | ||
|  | 			 Tak = T9x + T9y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9h, T9i, T9s, T9t; | ||
|  | 			 T9h = rio[WS(vs, 6) + WS(rs, 7)]; | ||
|  | 			 T9i = rio[WS(vs, 6) + WS(rs, 3)]; | ||
|  | 			 T9j = T9h + T9i; | ||
|  | 			 T9r = T9h - T9i; | ||
|  | 			 T9s = iio[WS(vs, 6) + WS(rs, 7)]; | ||
|  | 			 T9t = iio[WS(vs, 6) + WS(rs, 3)]; | ||
|  | 			 T9u = T9s - T9t; | ||
|  | 			 Tal = T9s + T9t; | ||
|  | 		    } | ||
|  | 		    T9k = T9g + T9j; | ||
|  | 		    Taf = T9j - T9g; | ||
|  | 		    TaA = Tak + Tal; | ||
|  | 		    Tam = Tak - Tal; | ||
|  | 		    T9K = T9z - T9w; | ||
|  | 		    T9L = T9r + T9u; | ||
|  | 		    Ta2 = T9K + T9L; | ||
|  | 		    T9v = T9r - T9u; | ||
|  | 		    T9A = T9w + T9z; | ||
|  | 		    T9B = T9v - T9A; | ||
|  | 		    T9X = T9A + T9v; | ||
|  | 	       } | ||
|  | 	       rio[0] = T7 + Te; | ||
|  | 	       iio[0] = T1t + T1u; | ||
|  | 	       rio[WS(rs, 1)] = T1D + T1K; | ||
|  | 	       iio[WS(rs, 1)] = T2Z + T30; | ||
|  | 	       rio[WS(rs, 2)] = T39 + T3g; | ||
|  | 	       iio[WS(rs, 2)] = T4v + T4w; | ||
|  | 	       rio[WS(rs, 3)] = T4F + T4M; | ||
|  | 	       iio[WS(rs, 3)] = T61 + T62; | ||
|  | 	       rio[WS(rs, 4)] = T6b + T6i; | ||
|  | 	       iio[WS(rs, 4)] = T7x + T7y; | ||
|  | 	       rio[WS(rs, 5)] = T7H + T7O; | ||
|  | 	       iio[WS(rs, 5)] = T93 + T94; | ||
|  | 	       rio[WS(rs, 6)] = T9d + T9k; | ||
|  | 	       iio[WS(rs, 6)] = Taz + TaA; | ||
|  | 	       rio[WS(rs, 7)] = TaJ + TaQ; | ||
|  | 	       iio[WS(rs, 7)] = Tc5 + Tc6; | ||
|  | 	       { | ||
|  | 		    E TS, TX, TT, TY, TP, TU; | ||
|  | 		    TS = FNMS(KP707106781, TR, TQ); | ||
|  | 		    TX = FNMS(KP707106781, TW, TV); | ||
|  | 		    TP = W[8]; | ||
|  | 		    TT = TP * TS; | ||
|  | 		    TY = TP * TX; | ||
|  | 		    TU = W[9]; | ||
|  | 		    rio[WS(vs, 5)] = FMA(TU, TX, TT); | ||
|  | 		    iio[WS(vs, 5)] = FNMS(TU, TS, TY); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2N, T2B, T2H, T2I, T2O, T2G; | ||
|  | 		    T2N = T2J - T2M; | ||
|  | 		    T2G = T2E - T2F; | ||
|  | 		    T2B = W[10]; | ||
|  | 		    T2H = T2B * T2G; | ||
|  | 		    T2I = W[11]; | ||
|  | 		    T2O = T2I * T2G; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1n, T1j, T1l, T1m, T1o, T1k; | ||
|  | 		    T1n = T1d + T1g; | ||
|  | 		    T1k = T19 + T18; | ||
|  | 		    T1j = W[2]; | ||
|  | 		    T1l = T1j * T1k; | ||
|  | 		    T1m = W[3]; | ||
|  | 		    T1o = T1m * T1k; | ||
|  | 		    iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l); | ||
|  | 		    rio[WS(vs, 2)] = FMA(T1j, T1n, T1o); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1q, T1v, T1r, T1w, T1p, T1s; | ||
|  | 		    T1q = T7 - Te; | ||
|  | 		    T1v = T1t - T1u; | ||
|  | 		    T1p = W[6]; | ||
|  | 		    T1r = T1p * T1q; | ||
|  | 		    T1w = T1p * T1v; | ||
|  | 		    T1s = W[7]; | ||
|  | 		    rio[WS(vs, 4)] = FMA(T1s, T1v, T1r); | ||
|  | 		    iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tan, Tab, Tah, Tai, Tao, Tag; | ||
|  | 		    Tan = Taj - Tam; | ||
|  | 		    Tag = Tae - Taf; | ||
|  | 		    Tab = W[10]; | ||
|  | 		    Tah = Tab * Tag; | ||
|  | 		    Tai = W[11]; | ||
|  | 		    Tao = Tai * Tag; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc2, Tc7, Tc3, Tc8, Tc1, Tc4; | ||
|  | 		    Tc2 = TaJ - TaQ; | ||
|  | 		    Tc7 = Tc5 - Tc6; | ||
|  | 		    Tc1 = W[6]; | ||
|  | 		    Tc3 = Tc1 * Tc2; | ||
|  | 		    Tc8 = Tc1 * Tc7; | ||
|  | 		    Tc4 = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tbu, Tbz, Tbv, TbA, Tbr, Tbw; | ||
|  | 		    Tbu = FNMS(KP707106781, Tbt, Tbs); | ||
|  | 		    Tbz = FNMS(KP707106781, Tby, Tbx); | ||
|  | 		    Tbr = W[8]; | ||
|  | 		    Tbv = Tbr * Tbu; | ||
|  | 		    TbA = Tbr * Tbz; | ||
|  | 		    Tbw = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TbC, TbF, TbD, TbG, TbB, TbE; | ||
|  | 		    TbC = FMA(KP707106781, Tbt, Tbs); | ||
|  | 		    TbF = FMA(KP707106781, Tby, Tbx); | ||
|  | 		    TbB = W[0]; | ||
|  | 		    TbD = TbB * TbC; | ||
|  | 		    TbG = TbB * TbF; | ||
|  | 		    TbE = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T10, T13, T11, T14, TZ, T12; | ||
|  | 		    T10 = FMA(KP707106781, TR, TQ); | ||
|  | 		    T13 = FMA(KP707106781, TW, TV); | ||
|  | 		    TZ = W[0]; | ||
|  | 		    T11 = TZ * T10; | ||
|  | 		    T14 = TZ * T13; | ||
|  | 		    T12 = W[1]; | ||
|  | 		    rio[WS(vs, 1)] = FMA(T12, T13, T11); | ||
|  | 		    iio[WS(vs, 1)] = FNMS(T12, T10, T14); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2w, T2z, T2x, T2A, T2v, T2y; | ||
|  | 		    T2w = FMA(KP707106781, T2n, T2m); | ||
|  | 		    T2z = FMA(KP707106781, T2s, T2r); | ||
|  | 		    T2v = W[0]; | ||
|  | 		    T2x = T2v * T2w; | ||
|  | 		    T2A = T2v * T2z; | ||
|  | 		    T2y = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1h, T15, T1b, T1c, T1i, T1a; | ||
|  | 		    T1h = T1d - T1g; | ||
|  | 		    T1a = T18 - T19; | ||
|  | 		    T15 = W[10]; | ||
|  | 		    T1b = T15 * T1a; | ||
|  | 		    T1c = W[11]; | ||
|  | 		    T1i = T1c * T1a; | ||
|  | 		    iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b); | ||
|  | 		    rio[WS(vs, 6)] = FMA(T15, T1h, T1i); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2o, T2t, T2p, T2u, T2l, T2q; | ||
|  | 		    T2o = FNMS(KP707106781, T2n, T2m); | ||
|  | 		    T2t = FNMS(KP707106781, T2s, T2r); | ||
|  | 		    T2l = W[8]; | ||
|  | 		    T2p = T2l * T2o; | ||
|  | 		    T2u = T2l * T2t; | ||
|  | 		    T2q = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tat, Tap, Tar, Tas, Tau, Taq; | ||
|  | 		    Tat = Taj + Tam; | ||
|  | 		    Taq = Taf + Tae; | ||
|  | 		    Tap = W[2]; | ||
|  | 		    Tar = Tap * Taq; | ||
|  | 		    Tas = W[3]; | ||
|  | 		    Tau = Tas * Taq; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TbZ, TbV, TbX, TbY, Tc0, TbW; | ||
|  | 		    TbZ = TbP + TbS; | ||
|  | 		    TbW = TbL + TbK; | ||
|  | 		    TbV = W[2]; | ||
|  | 		    TbX = TbV * TbW; | ||
|  | 		    TbY = W[3]; | ||
|  | 		    Tc0 = TbY * TbW; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Taw, TaB, Tax, TaC, Tav, Tay; | ||
|  | 		    Taw = T9d - T9k; | ||
|  | 		    TaB = Taz - TaA; | ||
|  | 		    Tav = W[6]; | ||
|  | 		    Tax = Tav * Taw; | ||
|  | 		    TaC = Tav * TaB; | ||
|  | 		    Tay = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TbT, TbH, TbN, TbO, TbU, TbM; | ||
|  | 		    TbT = TbP - TbS; | ||
|  | 		    TbM = TbK - TbL; | ||
|  | 		    TbH = W[10]; | ||
|  | 		    TbN = TbH * TbM; | ||
|  | 		    TbO = W[11]; | ||
|  | 		    TbU = TbO * TbM; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2T, T2P, T2R, T2S, T2U, T2Q; | ||
|  | 		    T2T = T2J + T2M; | ||
|  | 		    T2Q = T2F + T2E; | ||
|  | 		    T2P = W[2]; | ||
|  | 		    T2R = T2P * T2Q; | ||
|  | 		    T2S = W[3]; | ||
|  | 		    T2U = T2S * T2Q; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5Y, T63, T5Z, T64, T5X, T60; | ||
|  | 		    T5Y = T4F - T4M; | ||
|  | 		    T63 = T61 - T62; | ||
|  | 		    T5X = W[6]; | ||
|  | 		    T5Z = T5X * T5Y; | ||
|  | 		    T64 = T5X * T63; | ||
|  | 		    T60 = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T42, T45, T43, T46, T41, T44; | ||
|  | 		    T42 = FMA(KP707106781, T3T, T3S); | ||
|  | 		    T45 = FMA(KP707106781, T3Y, T3X); | ||
|  | 		    T41 = W[0]; | ||
|  | 		    T43 = T41 * T42; | ||
|  | 		    T46 = T41 * T45; | ||
|  | 		    T44 = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5y, T5B, T5z, T5C, T5x, T5A; | ||
|  | 		    T5y = FMA(KP707106781, T5p, T5o); | ||
|  | 		    T5B = FMA(KP707106781, T5u, T5t); | ||
|  | 		    T5x = W[0]; | ||
|  | 		    T5z = T5x * T5y; | ||
|  | 		    T5C = T5x * T5B; | ||
|  | 		    T5A = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6W, T71, T6X, T72, T6T, T6Y; | ||
|  | 		    T6W = FNMS(KP707106781, T6V, T6U); | ||
|  | 		    T71 = FNMS(KP707106781, T70, T6Z); | ||
|  | 		    T6T = W[8]; | ||
|  | 		    T6X = T6T * T6W; | ||
|  | 		    T72 = T6T * T71; | ||
|  | 		    T6Y = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta6, Ta9, Ta7, Taa, Ta5, Ta8; | ||
|  | 		    Ta6 = FMA(KP707106781, T9X, T9W); | ||
|  | 		    Ta9 = FMA(KP707106781, Ta2, Ta1); | ||
|  | 		    Ta5 = W[0]; | ||
|  | 		    Ta7 = Ta5 * Ta6; | ||
|  | 		    Taa = Ta5 * Ta9; | ||
|  | 		    Ta8 = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7r, T7n, T7p, T7q, T7s, T7o; | ||
|  | 		    T7r = T7h + T7k; | ||
|  | 		    T7o = T7d + T7c; | ||
|  | 		    T7n = W[2]; | ||
|  | 		    T7p = T7n * T7o; | ||
|  | 		    T7q = W[3]; | ||
|  | 		    T7s = T7q * T7o; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8X, T8T, T8V, T8W, T8Y, T8U; | ||
|  | 		    T8X = T8N + T8Q; | ||
|  | 		    T8U = T8J + T8I; | ||
|  | 		    T8T = W[2]; | ||
|  | 		    T8V = T8T * T8U; | ||
|  | 		    T8W = W[3]; | ||
|  | 		    T8Y = T8W * T8U; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2W, T31, T2X, T32, T2V, T2Y; | ||
|  | 		    T2W = T1D - T1K; | ||
|  | 		    T31 = T2Z - T30; | ||
|  | 		    T2V = W[6]; | ||
|  | 		    T2X = T2V * T2W; | ||
|  | 		    T32 = T2V * T31; | ||
|  | 		    T2Y = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5V, T5R, T5T, T5U, T5W, T5S; | ||
|  | 		    T5V = T5L + T5O; | ||
|  | 		    T5S = T5H + T5G; | ||
|  | 		    T5R = W[2]; | ||
|  | 		    T5T = T5R * T5S; | ||
|  | 		    T5U = W[3]; | ||
|  | 		    T5W = T5U * T5S; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3U, T3Z, T3V, T40, T3R, T3W; | ||
|  | 		    T3U = FNMS(KP707106781, T3T, T3S); | ||
|  | 		    T3Z = FNMS(KP707106781, T3Y, T3X); | ||
|  | 		    T3R = W[8]; | ||
|  | 		    T3V = T3R * T3U; | ||
|  | 		    T40 = T3R * T3Z; | ||
|  | 		    T3W = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5P, T5D, T5J, T5K, T5Q, T5I; | ||
|  | 		    T5P = T5L - T5O; | ||
|  | 		    T5I = T5G - T5H; | ||
|  | 		    T5D = W[10]; | ||
|  | 		    T5J = T5D * T5I; | ||
|  | 		    T5K = W[11]; | ||
|  | 		    T5Q = T5K * T5I; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T74, T77, T75, T78, T73, T76; | ||
|  | 		    T74 = FMA(KP707106781, T6V, T6U); | ||
|  | 		    T77 = FMA(KP707106781, T70, T6Z); | ||
|  | 		    T73 = W[0]; | ||
|  | 		    T75 = T73 * T74; | ||
|  | 		    T78 = T73 * T77; | ||
|  | 		    T76 = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9Y, Ta3, T9Z, Ta4, T9V, Ta0; | ||
|  | 		    T9Y = FNMS(KP707106781, T9X, T9W); | ||
|  | 		    Ta3 = FNMS(KP707106781, Ta2, Ta1); | ||
|  | 		    T9V = W[8]; | ||
|  | 		    T9Z = T9V * T9Y; | ||
|  | 		    Ta4 = T9V * Ta3; | ||
|  | 		    Ta0 = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7l, T79, T7f, T7g, T7m, T7e; | ||
|  | 		    T7l = T7h - T7k; | ||
|  | 		    T7e = T7c - T7d; | ||
|  | 		    T79 = W[10]; | ||
|  | 		    T7f = T79 * T7e; | ||
|  | 		    T7g = W[11]; | ||
|  | 		    T7m = T7g * T7e; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T90, T95, T91, T96, T8Z, T92; | ||
|  | 		    T90 = T7H - T7O; | ||
|  | 		    T95 = T93 - T94; | ||
|  | 		    T8Z = W[6]; | ||
|  | 		    T91 = T8Z * T90; | ||
|  | 		    T96 = T8Z * T95; | ||
|  | 		    T92 = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4j, T47, T4d, T4e, T4k, T4c; | ||
|  | 		    T4j = T4f - T4i; | ||
|  | 		    T4c = T4a - T4b; | ||
|  | 		    T47 = W[10]; | ||
|  | 		    T4d = T47 * T4c; | ||
|  | 		    T4e = W[11]; | ||
|  | 		    T4k = T4e * T4c; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5q, T5v, T5r, T5w, T5n, T5s; | ||
|  | 		    T5q = FNMS(KP707106781, T5p, T5o); | ||
|  | 		    T5v = FNMS(KP707106781, T5u, T5t); | ||
|  | 		    T5n = W[8]; | ||
|  | 		    T5r = T5n * T5q; | ||
|  | 		    T5w = T5n * T5v; | ||
|  | 		    T5s = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4p, T4l, T4n, T4o, T4q, T4m; | ||
|  | 		    T4p = T4f + T4i; | ||
|  | 		    T4m = T4b + T4a; | ||
|  | 		    T4l = W[2]; | ||
|  | 		    T4n = T4l * T4m; | ||
|  | 		    T4o = W[3]; | ||
|  | 		    T4q = T4o * T4m; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4s, T4x, T4t, T4y, T4r, T4u; | ||
|  | 		    T4s = T39 - T3g; | ||
|  | 		    T4x = T4v - T4w; | ||
|  | 		    T4r = W[6]; | ||
|  | 		    T4t = T4r * T4s; | ||
|  | 		    T4y = T4r * T4x; | ||
|  | 		    T4u = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7u, T7z, T7v, T7A, T7t, T7w; | ||
|  | 		    T7u = T6b - T6i; | ||
|  | 		    T7z = T7x - T7y; | ||
|  | 		    T7t = W[6]; | ||
|  | 		    T7v = T7t * T7u; | ||
|  | 		    T7A = T7t * T7z; | ||
|  | 		    T7w = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8R, T8F, T8L, T8M, T8S, T8K; | ||
|  | 		    T8R = T8N - T8Q; | ||
|  | 		    T8K = T8I - T8J; | ||
|  | 		    T8F = W[10]; | ||
|  | 		    T8L = T8F * T8K; | ||
|  | 		    T8M = W[11]; | ||
|  | 		    T8S = T8M * T8K; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8s, T8x, T8t, T8y, T8p, T8u; | ||
|  | 		    T8s = FNMS(KP707106781, T8r, T8q); | ||
|  | 		    T8x = FNMS(KP707106781, T8w, T8v); | ||
|  | 		    T8p = W[8]; | ||
|  | 		    T8t = T8p * T8s; | ||
|  | 		    T8y = T8p * T8x; | ||
|  | 		    T8u = W[9]; | ||
|  | 		    rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t); | ||
|  | 		    iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8A, T8D, T8B, T8E, T8z, T8C; | ||
|  | 		    T8A = FMA(KP707106781, T8r, T8q); | ||
|  | 		    T8D = FMA(KP707106781, T8w, T8v); | ||
|  | 		    T8z = W[0]; | ||
|  | 		    T8B = T8z * T8A; | ||
|  | 		    T8E = T8z * T8D; | ||
|  | 		    T8C = W[1]; | ||
|  | 		    rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B); | ||
|  | 		    iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw; | ||
|  | 		    TG = TE - TF; | ||
|  | 		    TH = FNMS(KP707106781, TG, TD); | ||
|  | 		    TN = FMA(KP707106781, TG, TD); | ||
|  | 		    TK = FMA(KP707106781, Tv, Tk); | ||
|  | 		    TJ = W[4]; | ||
|  | 		    TL = TJ * TK; | ||
|  | 		    TM = W[5]; | ||
|  | 		    TO = TM * TK; | ||
|  | 		    Tw = FNMS(KP707106781, Tv, Tk); | ||
|  | 		    Tf = W[12]; | ||
|  | 		    Tx = Tf * Tw; | ||
|  | 		    Ty = W[13]; | ||
|  | 		    TI = Ty * Tw; | ||
|  | 		    iio[WS(vs, 7)] = FNMS(Ty, TH, Tx); | ||
|  | 		    rio[WS(vs, 7)] = FMA(Tf, TH, TI); | ||
|  | 		    iio[WS(vs, 3)] = FNMS(TM, TN, TL); | ||
|  | 		    rio[WS(vs, 3)] = FMA(TJ, TN, TO); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5f, T5l, T5h, T5j, T5k, T5m, T4N, T55, T56, T5g, T5e, T5i, T54; | ||
|  | 		    T5e = T5c - T5d; | ||
|  | 		    T5f = FNMS(KP707106781, T5e, T5b); | ||
|  | 		    T5l = FMA(KP707106781, T5e, T5b); | ||
|  | 		    T5i = FMA(KP707106781, T53, T4S); | ||
|  | 		    T5h = W[4]; | ||
|  | 		    T5j = T5h * T5i; | ||
|  | 		    T5k = W[5]; | ||
|  | 		    T5m = T5k * T5i; | ||
|  | 		    T54 = FNMS(KP707106781, T53, T4S); | ||
|  | 		    T4N = W[12]; | ||
|  | 		    T55 = T4N * T54; | ||
|  | 		    T56 = W[13]; | ||
|  | 		    T5g = T56 * T54; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2d, T2j, T2f, T2h, T2i, T2k, T1L, T23, T24, T2e, T2c, T2g, T22; | ||
|  | 		    T2c = T2a - T2b; | ||
|  | 		    T2d = FNMS(KP707106781, T2c, T29); | ||
|  | 		    T2j = FMA(KP707106781, T2c, T29); | ||
|  | 		    T2g = FMA(KP707106781, T21, T1Q); | ||
|  | 		    T2f = W[4]; | ||
|  | 		    T2h = T2f * T2g; | ||
|  | 		    T2i = W[5]; | ||
|  | 		    T2k = T2i * T2g; | ||
|  | 		    T22 = FNMS(KP707106781, T21, T1Q); | ||
|  | 		    T1L = W[12]; | ||
|  | 		    T23 = T1L * T22; | ||
|  | 		    T24 = W[13]; | ||
|  | 		    T2e = T24 * T22; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3J, T3P, T3L, T3N, T3O, T3Q, T3h, T3z, T3A, T3K, T3I, T3M, T3y; | ||
|  | 		    T3I = T3G - T3H; | ||
|  | 		    T3J = FNMS(KP707106781, T3I, T3F); | ||
|  | 		    T3P = FMA(KP707106781, T3I, T3F); | ||
|  | 		    T3M = FMA(KP707106781, T3x, T3m); | ||
|  | 		    T3L = W[4]; | ||
|  | 		    T3N = T3L * T3M; | ||
|  | 		    T3O = W[5]; | ||
|  | 		    T3Q = T3O * T3M; | ||
|  | 		    T3y = FNMS(KP707106781, T3x, T3m); | ||
|  | 		    T3h = W[12]; | ||
|  | 		    T3z = T3h * T3y; | ||
|  | 		    T3A = W[13]; | ||
|  | 		    T3K = T3A * T3y; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6L, T6R, T6N, T6P, T6Q, T6S, T6j, T6B, T6C, T6M, T6K, T6O, T6A; | ||
|  | 		    T6K = T6I - T6J; | ||
|  | 		    T6L = FNMS(KP707106781, T6K, T6H); | ||
|  | 		    T6R = FMA(KP707106781, T6K, T6H); | ||
|  | 		    T6O = FMA(KP707106781, T6z, T6o); | ||
|  | 		    T6N = W[4]; | ||
|  | 		    T6P = T6N * T6O; | ||
|  | 		    T6Q = W[5]; | ||
|  | 		    T6S = T6Q * T6O; | ||
|  | 		    T6A = FNMS(KP707106781, T6z, T6o); | ||
|  | 		    T6j = W[12]; | ||
|  | 		    T6B = T6j * T6A; | ||
|  | 		    T6C = W[13]; | ||
|  | 		    T6M = T6C * T6A; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tbj, Tbp, Tbl, Tbn, Tbo, Tbq, TaR, Tb9, Tba, Tbk, Tbi, Tbm, Tb8; | ||
|  | 		    Tbi = Tbg - Tbh; | ||
|  | 		    Tbj = FNMS(KP707106781, Tbi, Tbf); | ||
|  | 		    Tbp = FMA(KP707106781, Tbi, Tbf); | ||
|  | 		    Tbm = FMA(KP707106781, Tb7, TaW); | ||
|  | 		    Tbl = W[4]; | ||
|  | 		    Tbn = Tbl * Tbm; | ||
|  | 		    Tbo = W[5]; | ||
|  | 		    Tbq = Tbo * Tbm; | ||
|  | 		    Tb8 = FNMS(KP707106781, Tb7, TaW); | ||
|  | 		    TaR = W[12]; | ||
|  | 		    Tb9 = TaR * Tb8; | ||
|  | 		    Tba = W[13]; | ||
|  | 		    Tbk = Tba * Tb8; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8h, T8n, T8j, T8l, T8m, T8o, T7P, T87, T88, T8i, T8g, T8k, T86; | ||
|  | 		    T8g = T8e - T8f; | ||
|  | 		    T8h = FNMS(KP707106781, T8g, T8d); | ||
|  | 		    T8n = FMA(KP707106781, T8g, T8d); | ||
|  | 		    T8k = FMA(KP707106781, T85, T7U); | ||
|  | 		    T8j = W[4]; | ||
|  | 		    T8l = T8j * T8k; | ||
|  | 		    T8m = W[5]; | ||
|  | 		    T8o = T8m * T8k; | ||
|  | 		    T86 = FNMS(KP707106781, T85, T7U); | ||
|  | 		    T7P = W[12]; | ||
|  | 		    T87 = T7P * T86; | ||
|  | 		    T88 = W[13]; | ||
|  | 		    T8i = T88 * T86; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9N, T9T, T9P, T9R, T9S, T9U, T9l, T9D, T9E, T9O, T9M, T9Q, T9C; | ||
|  | 		    T9M = T9K - T9L; | ||
|  | 		    T9N = FNMS(KP707106781, T9M, T9J); | ||
|  | 		    T9T = FMA(KP707106781, T9M, T9J); | ||
|  | 		    T9Q = FMA(KP707106781, T9B, T9q); | ||
|  | 		    T9P = W[4]; | ||
|  | 		    T9R = T9P * T9Q; | ||
|  | 		    T9S = W[5]; | ||
|  | 		    T9U = T9S * T9Q; | ||
|  | 		    T9C = FNMS(KP707106781, T9B, T9q); | ||
|  | 		    T9l = W[12]; | ||
|  | 		    T9D = T9l * T9C; | ||
|  | 		    T9E = W[13]; | ||
|  | 		    T9O = T9E * T9C; | ||
|  | 		    iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D); | ||
|  | 		    rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O); | ||
|  | 		    iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R); | ||
|  | 		    rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 8 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 352, 112, 176, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_q1_8) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1_8, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include dft/scalar/q.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 528 FP additions, 256 FP multiplications, | ||
|  |  * (or, 416 additions, 144 multiplications, 112 fused multiply/add), | ||
|  |  * 142 stack variables, 1 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "dft/scalar/q.h"
 | ||
|  | 
 | ||
|  | static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | ||
|  | 	       E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j; | ||
|  | 	       E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G; | ||
|  | 	       E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U; | ||
|  | 	       E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m; | ||
|  | 	       E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59; | ||
|  | 	       E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z; | ||
|  | 	       E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z; | ||
|  | 	       E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N; | ||
|  | 	       E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e; | ||
|  | 	       { | ||
|  | 		    E T3, Ty, Tj, TY, T6, Tg, TB, TZ; | ||
|  | 		    { | ||
|  | 			 E T1, T2, Th, Ti; | ||
|  | 			 T1 = rio[0]; | ||
|  | 			 T2 = rio[WS(rs, 4)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 Ty = T1 - T2; | ||
|  | 			 Th = iio[0]; | ||
|  | 			 Ti = iio[WS(rs, 4)]; | ||
|  | 			 Tj = Th - Ti; | ||
|  | 			 TY = Th + Ti; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4, T5, Tz, TA; | ||
|  | 			 T4 = rio[WS(rs, 2)]; | ||
|  | 			 T5 = rio[WS(rs, 6)]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 Tg = T4 - T5; | ||
|  | 			 Tz = iio[WS(rs, 2)]; | ||
|  | 			 TA = iio[WS(rs, 6)]; | ||
|  | 			 TB = Tz - TA; | ||
|  | 			 TZ = Tz + TA; | ||
|  | 		    } | ||
|  | 		    T7 = T3 + T6; | ||
|  | 		    T14 = T3 - T6; | ||
|  | 		    T1g = TY + TZ; | ||
|  | 		    Tk = Tg + Tj; | ||
|  | 		    TC = Ty - TB; | ||
|  | 		    TQ = Tj - Tg; | ||
|  | 		    T10 = TY - TZ; | ||
|  | 		    TM = Ty + TB; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o; | ||
|  | 		    { | ||
|  | 			 E T1q, T1r, T1J, T1K; | ||
|  | 			 T1q = rio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 T1r = rio[WS(vs, 1) + WS(rs, 5)]; | ||
|  | 			 T1s = T1q + T1r; | ||
|  | 			 T1I = T1q - T1r; | ||
|  | 			 T1J = iio[WS(vs, 1) + WS(rs, 1)]; | ||
|  | 			 T1K = iio[WS(vs, 1) + WS(rs, 5)]; | ||
|  | 			 T1L = T1J - T1K; | ||
|  | 			 T2n = T1J + T1K; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1t, T1u, T1E, T1F; | ||
|  | 			 T1t = rio[WS(vs, 1) + WS(rs, 7)]; | ||
|  | 			 T1u = rio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 			 T1v = T1t + T1u; | ||
|  | 			 T1D = T1t - T1u; | ||
|  | 			 T1E = iio[WS(vs, 1) + WS(rs, 7)]; | ||
|  | 			 T1F = iio[WS(vs, 1) + WS(rs, 3)]; | ||
|  | 			 T1G = T1E - T1F; | ||
|  | 			 T2o = T1E + T1F; | ||
|  | 		    } | ||
|  | 		    T1w = T1s + T1v; | ||
|  | 		    T2p = T2n - T2o; | ||
|  | 		    T2z = T2n + T2o; | ||
|  | 		    T1H = T1D - T1G; | ||
|  | 		    T1M = T1I + T1L; | ||
|  | 		    T1W = T1D + T1G; | ||
|  | 		    T2j = T1v - T1s; | ||
|  | 		    T1V = T1L - T1I; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J; | ||
|  | 		    { | ||
|  | 			 E T7L, T7M, T81, T82; | ||
|  | 			 T7L = rio[WS(vs, 6)]; | ||
|  | 			 T7M = rio[WS(vs, 6) + WS(rs, 4)]; | ||
|  | 			 T7N = T7L + T7M; | ||
|  | 			 T8i = T7L - T7M; | ||
|  | 			 T81 = iio[WS(vs, 6)]; | ||
|  | 			 T82 = iio[WS(vs, 6) + WS(rs, 4)]; | ||
|  | 			 T83 = T81 - T82; | ||
|  | 			 T8I = T81 + T82; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7O, T7P, T8j, T8k; | ||
|  | 			 T7O = rio[WS(vs, 6) + WS(rs, 2)]; | ||
|  | 			 T7P = rio[WS(vs, 6) + WS(rs, 6)]; | ||
|  | 			 T7Q = T7O + T7P; | ||
|  | 			 T80 = T7O - T7P; | ||
|  | 			 T8j = iio[WS(vs, 6) + WS(rs, 2)]; | ||
|  | 			 T8k = iio[WS(vs, 6) + WS(rs, 6)]; | ||
|  | 			 T8l = T8j - T8k; | ||
|  | 			 T8J = T8j + T8k; | ||
|  | 		    } | ||
|  | 		    T7R = T7N + T7Q; | ||
|  | 		    T8O = T7N - T7Q; | ||
|  | 		    T90 = T8I + T8J; | ||
|  | 		    T84 = T80 + T83; | ||
|  | 		    T8m = T8i - T8l; | ||
|  | 		    T8A = T83 - T80; | ||
|  | 		    T8K = T8I - T8J; | ||
|  | 		    T8w = T8i + T8l; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8; | ||
|  | 		    { | ||
|  | 			 E T9a, T9b, T9t, T9u; | ||
|  | 			 T9a = rio[WS(vs, 7) + WS(rs, 1)]; | ||
|  | 			 T9b = rio[WS(vs, 7) + WS(rs, 5)]; | ||
|  | 			 T9c = T9a + T9b; | ||
|  | 			 T9s = T9a - T9b; | ||
|  | 			 T9t = iio[WS(vs, 7) + WS(rs, 1)]; | ||
|  | 			 T9u = iio[WS(vs, 7) + WS(rs, 5)]; | ||
|  | 			 T9v = T9t - T9u; | ||
|  | 			 Ta7 = T9t + T9u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9d, T9e, T9o, T9p; | ||
|  | 			 T9d = rio[WS(vs, 7) + WS(rs, 7)]; | ||
|  | 			 T9e = rio[WS(vs, 7) + WS(rs, 3)]; | ||
|  | 			 T9f = T9d + T9e; | ||
|  | 			 T9n = T9d - T9e; | ||
|  | 			 T9o = iio[WS(vs, 7) + WS(rs, 7)]; | ||
|  | 			 T9p = iio[WS(vs, 7) + WS(rs, 3)]; | ||
|  | 			 T9q = T9o - T9p; | ||
|  | 			 Ta8 = T9o + T9p; | ||
|  | 		    } | ||
|  | 		    T9g = T9c + T9f; | ||
|  | 		    Ta9 = Ta7 - Ta8; | ||
|  | 		    Taj = Ta7 + Ta8; | ||
|  | 		    T9r = T9n - T9q; | ||
|  | 		    T9w = T9s + T9v; | ||
|  | 		    T9G = T9n + T9q; | ||
|  | 		    Ta3 = T9f - T9c; | ||
|  | 		    T9F = T9v - T9s; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, Tq, Tt, T15, Td, Tl, To, T16; | ||
|  | 		    { | ||
|  | 			 E T8, T9, Tr, Ts; | ||
|  | 			 T8 = rio[WS(rs, 1)]; | ||
|  | 			 T9 = rio[WS(rs, 5)]; | ||
|  | 			 Ta = T8 + T9; | ||
|  | 			 Tq = T8 - T9; | ||
|  | 			 Tr = iio[WS(rs, 1)]; | ||
|  | 			 Ts = iio[WS(rs, 5)]; | ||
|  | 			 Tt = Tr - Ts; | ||
|  | 			 T15 = Tr + Ts; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, Tm, Tn; | ||
|  | 			 Tb = rio[WS(rs, 7)]; | ||
|  | 			 Tc = rio[WS(rs, 3)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 Tl = Tb - Tc; | ||
|  | 			 Tm = iio[WS(rs, 7)]; | ||
|  | 			 Tn = iio[WS(rs, 3)]; | ||
|  | 			 To = Tm - Tn; | ||
|  | 			 T16 = Tm + Tn; | ||
|  | 		    } | ||
|  | 		    Te = Ta + Td; | ||
|  | 		    T17 = T15 - T16; | ||
|  | 		    T1h = T15 + T16; | ||
|  | 		    Tp = Tl - To; | ||
|  | 		    Tu = Tq + Tt; | ||
|  | 		    TE = Tl + To; | ||
|  | 		    T11 = Td - Ta; | ||
|  | 		    TD = Tt - Tq; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h; | ||
|  | 		    { | ||
|  | 			 E T1j, T1k, T1z, T1A; | ||
|  | 			 T1j = rio[WS(vs, 1)]; | ||
|  | 			 T1k = rio[WS(vs, 1) + WS(rs, 4)]; | ||
|  | 			 T1l = T1j + T1k; | ||
|  | 			 T1Q = T1j - T1k; | ||
|  | 			 T1z = iio[WS(vs, 1)]; | ||
|  | 			 T1A = iio[WS(vs, 1) + WS(rs, 4)]; | ||
|  | 			 T1B = T1z - T1A; | ||
|  | 			 T2g = T1z + T1A; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1m, T1n, T1R, T1S; | ||
|  | 			 T1m = rio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 T1n = rio[WS(vs, 1) + WS(rs, 6)]; | ||
|  | 			 T1o = T1m + T1n; | ||
|  | 			 T1y = T1m - T1n; | ||
|  | 			 T1R = iio[WS(vs, 1) + WS(rs, 2)]; | ||
|  | 			 T1S = iio[WS(vs, 1) + WS(rs, 6)]; | ||
|  | 			 T1T = T1R - T1S; | ||
|  | 			 T2h = T1R + T1S; | ||
|  | 		    } | ||
|  | 		    T1p = T1l + T1o; | ||
|  | 		    T2m = T1l - T1o; | ||
|  | 		    T2y = T2g + T2h; | ||
|  | 		    T1C = T1y + T1B; | ||
|  | 		    T1U = T1Q - T1T; | ||
|  | 		    T28 = T1B - T1y; | ||
|  | 		    T2i = T2g - T2h; | ||
|  | 		    T24 = T1Q + T1T; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q; | ||
|  | 		    { | ||
|  | 			 E T7S, T7T, T8b, T8c; | ||
|  | 			 T7S = rio[WS(vs, 6) + WS(rs, 1)]; | ||
|  | 			 T7T = rio[WS(vs, 6) + WS(rs, 5)]; | ||
|  | 			 T7U = T7S + T7T; | ||
|  | 			 T8a = T7S - T7T; | ||
|  | 			 T8b = iio[WS(vs, 6) + WS(rs, 1)]; | ||
|  | 			 T8c = iio[WS(vs, 6) + WS(rs, 5)]; | ||
|  | 			 T8d = T8b - T8c; | ||
|  | 			 T8P = T8b + T8c; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7V, T7W, T86, T87; | ||
|  | 			 T7V = rio[WS(vs, 6) + WS(rs, 7)]; | ||
|  | 			 T7W = rio[WS(vs, 6) + WS(rs, 3)]; | ||
|  | 			 T7X = T7V + T7W; | ||
|  | 			 T85 = T7V - T7W; | ||
|  | 			 T86 = iio[WS(vs, 6) + WS(rs, 7)]; | ||
|  | 			 T87 = iio[WS(vs, 6) + WS(rs, 3)]; | ||
|  | 			 T88 = T86 - T87; | ||
|  | 			 T8Q = T86 + T87; | ||
|  | 		    } | ||
|  | 		    T7Y = T7U + T7X; | ||
|  | 		    T8R = T8P - T8Q; | ||
|  | 		    T91 = T8P + T8Q; | ||
|  | 		    T89 = T85 - T88; | ||
|  | 		    T8e = T8a + T8d; | ||
|  | 		    T8o = T85 + T88; | ||
|  | 		    T8L = T7X - T7U; | ||
|  | 		    T8n = T8d - T8a; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1; | ||
|  | 		    { | ||
|  | 			 E T93, T94, T9j, T9k; | ||
|  | 			 T93 = rio[WS(vs, 7)]; | ||
|  | 			 T94 = rio[WS(vs, 7) + WS(rs, 4)]; | ||
|  | 			 T95 = T93 + T94; | ||
|  | 			 T9A = T93 - T94; | ||
|  | 			 T9j = iio[WS(vs, 7)]; | ||
|  | 			 T9k = iio[WS(vs, 7) + WS(rs, 4)]; | ||
|  | 			 T9l = T9j - T9k; | ||
|  | 			 Ta0 = T9j + T9k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T96, T97, T9B, T9C; | ||
|  | 			 T96 = rio[WS(vs, 7) + WS(rs, 2)]; | ||
|  | 			 T97 = rio[WS(vs, 7) + WS(rs, 6)]; | ||
|  | 			 T98 = T96 + T97; | ||
|  | 			 T9i = T96 - T97; | ||
|  | 			 T9B = iio[WS(vs, 7) + WS(rs, 2)]; | ||
|  | 			 T9C = iio[WS(vs, 7) + WS(rs, 6)]; | ||
|  | 			 T9D = T9B - T9C; | ||
|  | 			 Ta1 = T9B + T9C; | ||
|  | 		    } | ||
|  | 		    T99 = T95 + T98; | ||
|  | 		    Ta6 = T95 - T98; | ||
|  | 		    Tai = Ta0 + Ta1; | ||
|  | 		    T9m = T9i + T9l; | ||
|  | 		    T9E = T9A - T9D; | ||
|  | 		    T9S = T9l - T9i; | ||
|  | 		    Ta2 = Ta0 - Ta1; | ||
|  | 		    T9O = T9A + T9D; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z; | ||
|  | 		    { | ||
|  | 			 E T2B, T2C, T2R, T2S; | ||
|  | 			 T2B = rio[WS(vs, 2)]; | ||
|  | 			 T2C = rio[WS(vs, 2) + WS(rs, 4)]; | ||
|  | 			 T2D = T2B + T2C; | ||
|  | 			 T38 = T2B - T2C; | ||
|  | 			 T2R = iio[WS(vs, 2)]; | ||
|  | 			 T2S = iio[WS(vs, 2) + WS(rs, 4)]; | ||
|  | 			 T2T = T2R - T2S; | ||
|  | 			 T3y = T2R + T2S; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2E, T2F, T39, T3a; | ||
|  | 			 T2E = rio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T2F = rio[WS(vs, 2) + WS(rs, 6)]; | ||
|  | 			 T2G = T2E + T2F; | ||
|  | 			 T2Q = T2E - T2F; | ||
|  | 			 T39 = iio[WS(vs, 2) + WS(rs, 2)]; | ||
|  | 			 T3a = iio[WS(vs, 2) + WS(rs, 6)]; | ||
|  | 			 T3b = T39 - T3a; | ||
|  | 			 T3z = T39 + T3a; | ||
|  | 		    } | ||
|  | 		    T2H = T2D + T2G; | ||
|  | 		    T3E = T2D - T2G; | ||
|  | 		    T3Q = T3y + T3z; | ||
|  | 		    T2U = T2Q + T2T; | ||
|  | 		    T3c = T38 - T3b; | ||
|  | 		    T3q = T2T - T2Q; | ||
|  | 		    T3A = T3y - T3z; | ||
|  | 		    T3m = T38 + T3b; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y; | ||
|  | 		    { | ||
|  | 			 E T40, T41, T4j, T4k; | ||
|  | 			 T40 = rio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 			 T41 = rio[WS(vs, 3) + WS(rs, 5)]; | ||
|  | 			 T42 = T40 + T41; | ||
|  | 			 T4i = T40 - T41; | ||
|  | 			 T4j = iio[WS(vs, 3) + WS(rs, 1)]; | ||
|  | 			 T4k = iio[WS(vs, 3) + WS(rs, 5)]; | ||
|  | 			 T4l = T4j - T4k; | ||
|  | 			 T4X = T4j + T4k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T43, T44, T4e, T4f; | ||
|  | 			 T43 = rio[WS(vs, 3) + WS(rs, 7)]; | ||
|  | 			 T44 = rio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 			 T45 = T43 + T44; | ||
|  | 			 T4d = T43 - T44; | ||
|  | 			 T4e = iio[WS(vs, 3) + WS(rs, 7)]; | ||
|  | 			 T4f = iio[WS(vs, 3) + WS(rs, 3)]; | ||
|  | 			 T4g = T4e - T4f; | ||
|  | 			 T4Y = T4e + T4f; | ||
|  | 		    } | ||
|  | 		    T46 = T42 + T45; | ||
|  | 		    T4Z = T4X - T4Y; | ||
|  | 		    T59 = T4X + T4Y; | ||
|  | 		    T4h = T4d - T4g; | ||
|  | 		    T4m = T4i + T4l; | ||
|  | 		    T4w = T4d + T4g; | ||
|  | 		    T4T = T45 - T42; | ||
|  | 		    T4v = T4l - T4i; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69; | ||
|  | 		    { | ||
|  | 			 E T5b, T5c, T5r, T5s; | ||
|  | 			 T5b = rio[WS(vs, 4)]; | ||
|  | 			 T5c = rio[WS(vs, 4) + WS(rs, 4)]; | ||
|  | 			 T5d = T5b + T5c; | ||
|  | 			 T5I = T5b - T5c; | ||
|  | 			 T5r = iio[WS(vs, 4)]; | ||
|  | 			 T5s = iio[WS(vs, 4) + WS(rs, 4)]; | ||
|  | 			 T5t = T5r - T5s; | ||
|  | 			 T68 = T5r + T5s; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5e, T5f, T5J, T5K; | ||
|  | 			 T5e = rio[WS(vs, 4) + WS(rs, 2)]; | ||
|  | 			 T5f = rio[WS(vs, 4) + WS(rs, 6)]; | ||
|  | 			 T5g = T5e + T5f; | ||
|  | 			 T5q = T5e - T5f; | ||
|  | 			 T5J = iio[WS(vs, 4) + WS(rs, 2)]; | ||
|  | 			 T5K = iio[WS(vs, 4) + WS(rs, 6)]; | ||
|  | 			 T5L = T5J - T5K; | ||
|  | 			 T69 = T5J + T5K; | ||
|  | 		    } | ||
|  | 		    T5h = T5d + T5g; | ||
|  | 		    T6e = T5d - T5g; | ||
|  | 		    T6q = T68 + T69; | ||
|  | 		    T5u = T5q + T5t; | ||
|  | 		    T5M = T5I - T5L; | ||
|  | 		    T60 = T5t - T5q; | ||
|  | 		    T6a = T68 - T69; | ||
|  | 		    T5W = T5I + T5L; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y; | ||
|  | 		    { | ||
|  | 			 E T6A, T6B, T6T, T6U; | ||
|  | 			 T6A = rio[WS(vs, 5) + WS(rs, 1)]; | ||
|  | 			 T6B = rio[WS(vs, 5) + WS(rs, 5)]; | ||
|  | 			 T6C = T6A + T6B; | ||
|  | 			 T6S = T6A - T6B; | ||
|  | 			 T6T = iio[WS(vs, 5) + WS(rs, 1)]; | ||
|  | 			 T6U = iio[WS(vs, 5) + WS(rs, 5)]; | ||
|  | 			 T6V = T6T - T6U; | ||
|  | 			 T7x = T6T + T6U; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6D, T6E, T6O, T6P; | ||
|  | 			 T6D = rio[WS(vs, 5) + WS(rs, 7)]; | ||
|  | 			 T6E = rio[WS(vs, 5) + WS(rs, 3)]; | ||
|  | 			 T6F = T6D + T6E; | ||
|  | 			 T6N = T6D - T6E; | ||
|  | 			 T6O = iio[WS(vs, 5) + WS(rs, 7)]; | ||
|  | 			 T6P = iio[WS(vs, 5) + WS(rs, 3)]; | ||
|  | 			 T6Q = T6O - T6P; | ||
|  | 			 T7y = T6O + T6P; | ||
|  | 		    } | ||
|  | 		    T6G = T6C + T6F; | ||
|  | 		    T7z = T7x - T7y; | ||
|  | 		    T7J = T7x + T7y; | ||
|  | 		    T6R = T6N - T6Q; | ||
|  | 		    T6W = T6S + T6V; | ||
|  | 		    T76 = T6N + T6Q; | ||
|  | 		    T7t = T6F - T6C; | ||
|  | 		    T75 = T6V - T6S; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G; | ||
|  | 		    { | ||
|  | 			 E T2I, T2J, T31, T32; | ||
|  | 			 T2I = rio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 T2J = rio[WS(vs, 2) + WS(rs, 5)]; | ||
|  | 			 T2K = T2I + T2J; | ||
|  | 			 T30 = T2I - T2J; | ||
|  | 			 T31 = iio[WS(vs, 2) + WS(rs, 1)]; | ||
|  | 			 T32 = iio[WS(vs, 2) + WS(rs, 5)]; | ||
|  | 			 T33 = T31 - T32; | ||
|  | 			 T3F = T31 + T32; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2L, T2M, T2W, T2X; | ||
|  | 			 T2L = rio[WS(vs, 2) + WS(rs, 7)]; | ||
|  | 			 T2M = rio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 			 T2N = T2L + T2M; | ||
|  | 			 T2V = T2L - T2M; | ||
|  | 			 T2W = iio[WS(vs, 2) + WS(rs, 7)]; | ||
|  | 			 T2X = iio[WS(vs, 2) + WS(rs, 3)]; | ||
|  | 			 T2Y = T2W - T2X; | ||
|  | 			 T3G = T2W + T2X; | ||
|  | 		    } | ||
|  | 		    T2O = T2K + T2N; | ||
|  | 		    T3H = T3F - T3G; | ||
|  | 		    T3R = T3F + T3G; | ||
|  | 		    T2Z = T2V - T2Y; | ||
|  | 		    T34 = T30 + T33; | ||
|  | 		    T3e = T2V + T2Y; | ||
|  | 		    T3B = T2N - T2K; | ||
|  | 		    T3d = T33 - T30; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R; | ||
|  | 		    { | ||
|  | 			 E T3T, T3U, T49, T4a; | ||
|  | 			 T3T = rio[WS(vs, 3)]; | ||
|  | 			 T3U = rio[WS(vs, 3) + WS(rs, 4)]; | ||
|  | 			 T3V = T3T + T3U; | ||
|  | 			 T4q = T3T - T3U; | ||
|  | 			 T49 = iio[WS(vs, 3)]; | ||
|  | 			 T4a = iio[WS(vs, 3) + WS(rs, 4)]; | ||
|  | 			 T4b = T49 - T4a; | ||
|  | 			 T4Q = T49 + T4a; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3W, T3X, T4r, T4s; | ||
|  | 			 T3W = rio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 			 T3X = rio[WS(vs, 3) + WS(rs, 6)]; | ||
|  | 			 T3Y = T3W + T3X; | ||
|  | 			 T48 = T3W - T3X; | ||
|  | 			 T4r = iio[WS(vs, 3) + WS(rs, 2)]; | ||
|  | 			 T4s = iio[WS(vs, 3) + WS(rs, 6)]; | ||
|  | 			 T4t = T4r - T4s; | ||
|  | 			 T4R = T4r + T4s; | ||
|  | 		    } | ||
|  | 		    T3Z = T3V + T3Y; | ||
|  | 		    T4W = T3V - T3Y; | ||
|  | 		    T58 = T4Q + T4R; | ||
|  | 		    T4c = T48 + T4b; | ||
|  | 		    T4u = T4q - T4t; | ||
|  | 		    T4I = T4b - T48; | ||
|  | 		    T4S = T4Q - T4R; | ||
|  | 		    T4E = T4q + T4t; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g; | ||
|  | 		    { | ||
|  | 			 E T5i, T5j, T5B, T5C; | ||
|  | 			 T5i = rio[WS(vs, 4) + WS(rs, 1)]; | ||
|  | 			 T5j = rio[WS(vs, 4) + WS(rs, 5)]; | ||
|  | 			 T5k = T5i + T5j; | ||
|  | 			 T5A = T5i - T5j; | ||
|  | 			 T5B = iio[WS(vs, 4) + WS(rs, 1)]; | ||
|  | 			 T5C = iio[WS(vs, 4) + WS(rs, 5)]; | ||
|  | 			 T5D = T5B - T5C; | ||
|  | 			 T6f = T5B + T5C; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5l, T5m, T5w, T5x; | ||
|  | 			 T5l = rio[WS(vs, 4) + WS(rs, 7)]; | ||
|  | 			 T5m = rio[WS(vs, 4) + WS(rs, 3)]; | ||
|  | 			 T5n = T5l + T5m; | ||
|  | 			 T5v = T5l - T5m; | ||
|  | 			 T5w = iio[WS(vs, 4) + WS(rs, 7)]; | ||
|  | 			 T5x = iio[WS(vs, 4) + WS(rs, 3)]; | ||
|  | 			 T5y = T5w - T5x; | ||
|  | 			 T6g = T5w + T5x; | ||
|  | 		    } | ||
|  | 		    T5o = T5k + T5n; | ||
|  | 		    T6h = T6f - T6g; | ||
|  | 		    T6r = T6f + T6g; | ||
|  | 		    T5z = T5v - T5y; | ||
|  | 		    T5E = T5A + T5D; | ||
|  | 		    T5O = T5v + T5y; | ||
|  | 		    T6b = T5n - T5k; | ||
|  | 		    T5N = T5D - T5A; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r; | ||
|  | 		    { | ||
|  | 			 E T6t, T6u, T6J, T6K; | ||
|  | 			 T6t = rio[WS(vs, 5)]; | ||
|  | 			 T6u = rio[WS(vs, 5) + WS(rs, 4)]; | ||
|  | 			 T6v = T6t + T6u; | ||
|  | 			 T70 = T6t - T6u; | ||
|  | 			 T6J = iio[WS(vs, 5)]; | ||
|  | 			 T6K = iio[WS(vs, 5) + WS(rs, 4)]; | ||
|  | 			 T6L = T6J - T6K; | ||
|  | 			 T7q = T6J + T6K; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6w, T6x, T71, T72; | ||
|  | 			 T6w = rio[WS(vs, 5) + WS(rs, 2)]; | ||
|  | 			 T6x = rio[WS(vs, 5) + WS(rs, 6)]; | ||
|  | 			 T6y = T6w + T6x; | ||
|  | 			 T6I = T6w - T6x; | ||
|  | 			 T71 = iio[WS(vs, 5) + WS(rs, 2)]; | ||
|  | 			 T72 = iio[WS(vs, 5) + WS(rs, 6)]; | ||
|  | 			 T73 = T71 - T72; | ||
|  | 			 T7r = T71 + T72; | ||
|  | 		    } | ||
|  | 		    T6z = T6v + T6y; | ||
|  | 		    T7w = T6v - T6y; | ||
|  | 		    T7I = T7q + T7r; | ||
|  | 		    T6M = T6I + T6L; | ||
|  | 		    T74 = T70 - T73; | ||
|  | 		    T7i = T6L - T6I; | ||
|  | 		    T7s = T7q - T7r; | ||
|  | 		    T7e = T70 + T73; | ||
|  | 	       } | ||
|  | 	       rio[0] = T7 + Te; | ||
|  | 	       iio[0] = T1g + T1h; | ||
|  | 	       rio[WS(rs, 1)] = T1p + T1w; | ||
|  | 	       iio[WS(rs, 1)] = T2y + T2z; | ||
|  | 	       rio[WS(rs, 3)] = T3Z + T46; | ||
|  | 	       rio[WS(rs, 2)] = T2H + T2O; | ||
|  | 	       iio[WS(rs, 2)] = T3Q + T3R; | ||
|  | 	       iio[WS(rs, 3)] = T58 + T59; | ||
|  | 	       rio[WS(rs, 6)] = T7R + T7Y; | ||
|  | 	       iio[WS(rs, 6)] = T90 + T91; | ||
|  | 	       iio[WS(rs, 5)] = T7I + T7J; | ||
|  | 	       rio[WS(rs, 5)] = T6z + T6G; | ||
|  | 	       iio[WS(rs, 4)] = T6q + T6r; | ||
|  | 	       rio[WS(rs, 4)] = T5h + T5o; | ||
|  | 	       rio[WS(rs, 7)] = T99 + T9g; | ||
|  | 	       iio[WS(rs, 7)] = Tai + Taj; | ||
|  | 	       { | ||
|  | 		    E T12, T18, TX, T13; | ||
|  | 		    T12 = T10 - T11; | ||
|  | 		    T18 = T14 - T17; | ||
|  | 		    TX = W[10]; | ||
|  | 		    T13 = W[11]; | ||
|  | 		    iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12); | ||
|  | 		    rio[WS(vs, 6)] = FMA(T13, T12, TX * T18); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tag, Tak, Taf, Tah; | ||
|  | 		    Tag = T99 - T9g; | ||
|  | 		    Tak = Tai - Taj; | ||
|  | 		    Taf = W[6]; | ||
|  | 		    Tah = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8M, T8S, T8H, T8N; | ||
|  | 		    T8M = T8K - T8L; | ||
|  | 		    T8S = T8O - T8R; | ||
|  | 		    T8H = W[10]; | ||
|  | 		    T8N = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2k, T2q, T2f, T2l; | ||
|  | 		    T2k = T2i - T2j; | ||
|  | 		    T2q = T2m - T2p; | ||
|  | 		    T2f = W[10]; | ||
|  | 		    T2l = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta4, Taa, T9Z, Ta5; | ||
|  | 		    Ta4 = Ta2 - Ta3; | ||
|  | 		    Taa = Ta6 - Ta9; | ||
|  | 		    T9Z = W[10]; | ||
|  | 		    Ta5 = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8Y, T92, T8X, T8Z; | ||
|  | 		    T8Y = T7R - T7Y; | ||
|  | 		    T92 = T90 - T91; | ||
|  | 		    T8X = W[6]; | ||
|  | 		    T8Z = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2w, T2A, T2v, T2x; | ||
|  | 		    T2w = T1p - T1w; | ||
|  | 		    T2A = T2y - T2z; | ||
|  | 		    T2v = W[6]; | ||
|  | 		    T2x = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tac, Tae, Tab, Tad; | ||
|  | 		    Tac = Ta3 + Ta2; | ||
|  | 		    Tae = Ta6 + Ta9; | ||
|  | 		    Tab = W[2]; | ||
|  | 		    Tad = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8U, T8W, T8T, T8V; | ||
|  | 		    T8U = T8L + T8K; | ||
|  | 		    T8W = T8O + T8R; | ||
|  | 		    T8T = W[2]; | ||
|  | 		    T8V = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1a, T1c, T19, T1b; | ||
|  | 		    T1a = T11 + T10; | ||
|  | 		    T1c = T14 + T17; | ||
|  | 		    T19 = W[2]; | ||
|  | 		    T1b = W[3]; | ||
|  | 		    iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a); | ||
|  | 		    rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1e, T1i, T1d, T1f; | ||
|  | 		    T1e = T7 - Te; | ||
|  | 		    T1i = T1g - T1h; | ||
|  | 		    T1d = W[6]; | ||
|  | 		    T1f = W[7]; | ||
|  | 		    rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i); | ||
|  | 		    iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2s, T2u, T2r, T2t; | ||
|  | 		    T2s = T2j + T2i; | ||
|  | 		    T2u = T2m + T2p; | ||
|  | 		    T2r = W[2]; | ||
|  | 		    T2t = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3C, T3I, T3x, T3D; | ||
|  | 		    T3C = T3A - T3B; | ||
|  | 		    T3I = T3E - T3H; | ||
|  | 		    T3x = W[10]; | ||
|  | 		    T3D = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4U, T50, T4P, T4V; | ||
|  | 		    T4U = T4S - T4T; | ||
|  | 		    T50 = T4W - T4Z; | ||
|  | 		    T4P = W[10]; | ||
|  | 		    T4V = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T56, T5a, T55, T57; | ||
|  | 		    T56 = T3Z - T46; | ||
|  | 		    T5a = T58 - T59; | ||
|  | 		    T55 = W[6]; | ||
|  | 		    T57 = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6o, T6s, T6n, T6p; | ||
|  | 		    T6o = T5h - T5o; | ||
|  | 		    T6s = T6q - T6r; | ||
|  | 		    T6n = W[6]; | ||
|  | 		    T6p = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7u, T7A, T7p, T7v; | ||
|  | 		    T7u = T7s - T7t; | ||
|  | 		    T7A = T7w - T7z; | ||
|  | 		    T7p = W[10]; | ||
|  | 		    T7v = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6c, T6i, T67, T6d; | ||
|  | 		    T6c = T6a - T6b; | ||
|  | 		    T6i = T6e - T6h; | ||
|  | 		    T67 = W[10]; | ||
|  | 		    T6d = W[11]; | ||
|  | 		    iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c); | ||
|  | 		    rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7G, T7K, T7F, T7H; | ||
|  | 		    T7G = T6z - T6G; | ||
|  | 		    T7K = T7I - T7J; | ||
|  | 		    T7F = W[6]; | ||
|  | 		    T7H = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3O, T3S, T3N, T3P; | ||
|  | 		    T3O = T2H - T2O; | ||
|  | 		    T3S = T3Q - T3R; | ||
|  | 		    T3N = W[6]; | ||
|  | 		    T3P = W[7]; | ||
|  | 		    rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S); | ||
|  | 		    iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3K, T3M, T3J, T3L; | ||
|  | 		    T3K = T3B + T3A; | ||
|  | 		    T3M = T3E + T3H; | ||
|  | 		    T3J = W[2]; | ||
|  | 		    T3L = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7C, T7E, T7B, T7D; | ||
|  | 		    T7C = T7t + T7s; | ||
|  | 		    T7E = T7w + T7z; | ||
|  | 		    T7B = W[2]; | ||
|  | 		    T7D = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6k, T6m, T6j, T6l; | ||
|  | 		    T6k = T6b + T6a; | ||
|  | 		    T6m = T6e + T6h; | ||
|  | 		    T6j = W[2]; | ||
|  | 		    T6l = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T52, T54, T51, T53; | ||
|  | 		    T52 = T4T + T4S; | ||
|  | 		    T54 = T4W + T4Z; | ||
|  | 		    T51 = W[2]; | ||
|  | 		    T53 = W[3]; | ||
|  | 		    iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52); | ||
|  | 		    rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5G, T5S, T5Q, T5U, T5F, T5P; | ||
|  | 		    T5F = KP707106781 * (T5z - T5E); | ||
|  | 		    T5G = T5u - T5F; | ||
|  | 		    T5S = T5u + T5F; | ||
|  | 		    T5P = KP707106781 * (T5N - T5O); | ||
|  | 		    T5Q = T5M - T5P; | ||
|  | 		    T5U = T5M + T5P; | ||
|  | 		    { | ||
|  | 			 E T5p, T5H, T5R, T5T; | ||
|  | 			 T5p = W[12]; | ||
|  | 			 T5H = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q); | ||
|  | 			 T5R = W[4]; | ||
|  | 			 T5T = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, TI, TG, TK, Tv, TF; | ||
|  | 		    Tv = KP707106781 * (Tp - Tu); | ||
|  | 		    Tw = Tk - Tv; | ||
|  | 		    TI = Tk + Tv; | ||
|  | 		    TF = KP707106781 * (TD - TE); | ||
|  | 		    TG = TC - TF; | ||
|  | 		    TK = TC + TF; | ||
|  | 		    { | ||
|  | 			 E Tf, Tx, TH, TJ; | ||
|  | 			 Tf = W[12]; | ||
|  | 			 Tx = W[13]; | ||
|  | 			 iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw); | ||
|  | 			 rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG); | ||
|  | 			 TH = W[4]; | ||
|  | 			 TJ = W[5]; | ||
|  | 			 iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI); | ||
|  | 			 rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9Q, T9W, T9U, T9Y, T9P, T9T; | ||
|  | 		    T9P = KP707106781 * (T9w + T9r); | ||
|  | 		    T9Q = T9O - T9P; | ||
|  | 		    T9W = T9O + T9P; | ||
|  | 		    T9T = KP707106781 * (T9F + T9G); | ||
|  | 		    T9U = T9S - T9T; | ||
|  | 		    T9Y = T9S + T9T; | ||
|  | 		    { | ||
|  | 			 E T9N, T9R, T9V, T9X; | ||
|  | 			 T9N = W[8]; | ||
|  | 			 T9R = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U); | ||
|  | 			 T9V = W[0]; | ||
|  | 			 T9X = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T36, T3i, T3g, T3k, T35, T3f; | ||
|  | 		    T35 = KP707106781 * (T2Z - T34); | ||
|  | 		    T36 = T2U - T35; | ||
|  | 		    T3i = T2U + T35; | ||
|  | 		    T3f = KP707106781 * (T3d - T3e); | ||
|  | 		    T3g = T3c - T3f; | ||
|  | 		    T3k = T3c + T3f; | ||
|  | 		    { | ||
|  | 			 E T2P, T37, T3h, T3j; | ||
|  | 			 T2P = W[12]; | ||
|  | 			 T37 = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g); | ||
|  | 			 T3h = W[4]; | ||
|  | 			 T3j = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5Y, T64, T62, T66, T5X, T61; | ||
|  | 		    T5X = KP707106781 * (T5E + T5z); | ||
|  | 		    T5Y = T5W - T5X; | ||
|  | 		    T64 = T5W + T5X; | ||
|  | 		    T61 = KP707106781 * (T5N + T5O); | ||
|  | 		    T62 = T60 - T61; | ||
|  | 		    T66 = T60 + T61; | ||
|  | 		    { | ||
|  | 			 E T5V, T5Z, T63, T65; | ||
|  | 			 T5V = W[8]; | ||
|  | 			 T5Z = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62); | ||
|  | 			 T63 = W[0]; | ||
|  | 			 T65 = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7g, T7m, T7k, T7o, T7f, T7j; | ||
|  | 		    T7f = KP707106781 * (T6W + T6R); | ||
|  | 		    T7g = T7e - T7f; | ||
|  | 		    T7m = T7e + T7f; | ||
|  | 		    T7j = KP707106781 * (T75 + T76); | ||
|  | 		    T7k = T7i - T7j; | ||
|  | 		    T7o = T7i + T7j; | ||
|  | 		    { | ||
|  | 			 E T7d, T7h, T7l, T7n; | ||
|  | 			 T7d = W[8]; | ||
|  | 			 T7h = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k); | ||
|  | 			 T7l = W[0]; | ||
|  | 			 T7n = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8g, T8s, T8q, T8u, T8f, T8p; | ||
|  | 		    T8f = KP707106781 * (T89 - T8e); | ||
|  | 		    T8g = T84 - T8f; | ||
|  | 		    T8s = T84 + T8f; | ||
|  | 		    T8p = KP707106781 * (T8n - T8o); | ||
|  | 		    T8q = T8m - T8p; | ||
|  | 		    T8u = T8m + T8p; | ||
|  | 		    { | ||
|  | 			 E T7Z, T8h, T8r, T8t; | ||
|  | 			 T7Z = W[12]; | ||
|  | 			 T8h = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q); | ||
|  | 			 T8r = W[4]; | ||
|  | 			 T8t = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4G, T4M, T4K, T4O, T4F, T4J; | ||
|  | 		    T4F = KP707106781 * (T4m + T4h); | ||
|  | 		    T4G = T4E - T4F; | ||
|  | 		    T4M = T4E + T4F; | ||
|  | 		    T4J = KP707106781 * (T4v + T4w); | ||
|  | 		    T4K = T4I - T4J; | ||
|  | 		    T4O = T4I + T4J; | ||
|  | 		    { | ||
|  | 			 E T4D, T4H, T4L, T4N; | ||
|  | 			 T4D = W[8]; | ||
|  | 			 T4H = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K); | ||
|  | 			 T4L = W[0]; | ||
|  | 			 T4N = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TO, TU, TS, TW, TN, TR; | ||
|  | 		    TN = KP707106781 * (Tu + Tp); | ||
|  | 		    TO = TM - TN; | ||
|  | 		    TU = TM + TN; | ||
|  | 		    TR = KP707106781 * (TD + TE); | ||
|  | 		    TS = TQ - TR; | ||
|  | 		    TW = TQ + TR; | ||
|  | 		    { | ||
|  | 			 E TL, TP, TT, TV; | ||
|  | 			 TL = W[8]; | ||
|  | 			 TP = W[9]; | ||
|  | 			 rio[WS(vs, 5)] = FMA(TL, TO, TP * TS); | ||
|  | 			 iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS); | ||
|  | 			 TT = W[0]; | ||
|  | 			 TV = W[1]; | ||
|  | 			 rio[WS(vs, 1)] = FMA(TT, TU, TV * TW); | ||
|  | 			 iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T26, T2c, T2a, T2e, T25, T29; | ||
|  | 		    T25 = KP707106781 * (T1M + T1H); | ||
|  | 		    T26 = T24 - T25; | ||
|  | 		    T2c = T24 + T25; | ||
|  | 		    T29 = KP707106781 * (T1V + T1W); | ||
|  | 		    T2a = T28 - T29; | ||
|  | 		    T2e = T28 + T29; | ||
|  | 		    { | ||
|  | 			 E T23, T27, T2b, T2d; | ||
|  | 			 T23 = W[8]; | ||
|  | 			 T27 = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a); | ||
|  | 			 T2b = W[0]; | ||
|  | 			 T2d = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9y, T9K, T9I, T9M, T9x, T9H; | ||
|  | 		    T9x = KP707106781 * (T9r - T9w); | ||
|  | 		    T9y = T9m - T9x; | ||
|  | 		    T9K = T9m + T9x; | ||
|  | 		    T9H = KP707106781 * (T9F - T9G); | ||
|  | 		    T9I = T9E - T9H; | ||
|  | 		    T9M = T9E + T9H; | ||
|  | 		    { | ||
|  | 			 E T9h, T9z, T9J, T9L; | ||
|  | 			 T9h = W[12]; | ||
|  | 			 T9z = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I); | ||
|  | 			 T9J = W[4]; | ||
|  | 			 T9L = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6Y, T7a, T78, T7c, T6X, T77; | ||
|  | 		    T6X = KP707106781 * (T6R - T6W); | ||
|  | 		    T6Y = T6M - T6X; | ||
|  | 		    T7a = T6M + T6X; | ||
|  | 		    T77 = KP707106781 * (T75 - T76); | ||
|  | 		    T78 = T74 - T77; | ||
|  | 		    T7c = T74 + T77; | ||
|  | 		    { | ||
|  | 			 E T6H, T6Z, T79, T7b; | ||
|  | 			 T6H = W[12]; | ||
|  | 			 T6Z = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78); | ||
|  | 			 T79 = W[4]; | ||
|  | 			 T7b = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1O, T20, T1Y, T22, T1N, T1X; | ||
|  | 		    T1N = KP707106781 * (T1H - T1M); | ||
|  | 		    T1O = T1C - T1N; | ||
|  | 		    T20 = T1C + T1N; | ||
|  | 		    T1X = KP707106781 * (T1V - T1W); | ||
|  | 		    T1Y = T1U - T1X; | ||
|  | 		    T22 = T1U + T1X; | ||
|  | 		    { | ||
|  | 			 E T1x, T1P, T1Z, T21; | ||
|  | 			 T1x = W[12]; | ||
|  | 			 T1P = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y); | ||
|  | 			 T1Z = W[4]; | ||
|  | 			 T21 = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4o, T4A, T4y, T4C, T4n, T4x; | ||
|  | 		    T4n = KP707106781 * (T4h - T4m); | ||
|  | 		    T4o = T4c - T4n; | ||
|  | 		    T4A = T4c + T4n; | ||
|  | 		    T4x = KP707106781 * (T4v - T4w); | ||
|  | 		    T4y = T4u - T4x; | ||
|  | 		    T4C = T4u + T4x; | ||
|  | 		    { | ||
|  | 			 E T47, T4p, T4z, T4B; | ||
|  | 			 T47 = W[12]; | ||
|  | 			 T4p = W[13]; | ||
|  | 			 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o); | ||
|  | 			 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y); | ||
|  | 			 T4z = W[4]; | ||
|  | 			 T4B = W[5]; | ||
|  | 			 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A); | ||
|  | 			 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3o, T3u, T3s, T3w, T3n, T3r; | ||
|  | 		    T3n = KP707106781 * (T34 + T2Z); | ||
|  | 		    T3o = T3m - T3n; | ||
|  | 		    T3u = T3m + T3n; | ||
|  | 		    T3r = KP707106781 * (T3d + T3e); | ||
|  | 		    T3s = T3q - T3r; | ||
|  | 		    T3w = T3q + T3r; | ||
|  | 		    { | ||
|  | 			 E T3l, T3p, T3t, T3v; | ||
|  | 			 T3l = W[8]; | ||
|  | 			 T3p = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s); | ||
|  | 			 T3t = W[0]; | ||
|  | 			 T3v = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T8y, T8E, T8C, T8G, T8x, T8B; | ||
|  | 		    T8x = KP707106781 * (T8e + T89); | ||
|  | 		    T8y = T8w - T8x; | ||
|  | 		    T8E = T8w + T8x; | ||
|  | 		    T8B = KP707106781 * (T8n + T8o); | ||
|  | 		    T8C = T8A - T8B; | ||
|  | 		    T8G = T8A + T8B; | ||
|  | 		    { | ||
|  | 			 E T8v, T8z, T8D, T8F; | ||
|  | 			 T8v = W[8]; | ||
|  | 			 T8z = W[9]; | ||
|  | 			 rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C); | ||
|  | 			 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C); | ||
|  | 			 T8D = W[0]; | ||
|  | 			 T8F = W[1]; | ||
|  | 			 rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G); | ||
|  | 			 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 0, 8 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, { 416, 144, 112, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void X(codelet_q1_8) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1_8, &desc); | ||
|  | } | ||
|  | #endif
 |