488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Distributed transposes using a sequence of carefully scheduled
 | ||
|  |    pairwise exchanges.  This has the advantage that it can be done | ||
|  |    in-place, or out-of-place while preserving the input, using buffer | ||
|  |    space proportional to the local size divided by the number of | ||
|  |    processes (i.e. to the total array size divided by the number of | ||
|  |    processes squared). */ | ||
|  | 
 | ||
|  | #include "mpi-transpose.h"
 | ||
|  | #include <string.h>
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  |      int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_mpi_transpose super; | ||
|  | 
 | ||
|  |      plan *cld1, *cld2, *cld2rest, *cld3; | ||
|  |      INT rest_Ioff, rest_Ooff; | ||
|  |       | ||
|  |      int n_pes, my_pe, *sched; | ||
|  |      INT *send_block_sizes, *send_block_offsets; | ||
|  |      INT *recv_block_sizes, *recv_block_offsets; | ||
|  |      MPI_Comm comm; | ||
|  |      int preserve_input; | ||
|  | } P; | ||
|  | 
 | ||
|  | static void transpose_chunks(int *sched, int n_pes, int my_pe, | ||
|  | 			     INT *sbs, INT *sbo, INT *rbs, INT *rbo, | ||
|  | 			     MPI_Comm comm, | ||
|  | 			     R *I, R *O) | ||
|  | { | ||
|  |      if (sched) { | ||
|  | 	  int i; | ||
|  | 	  MPI_Status status; | ||
|  | 
 | ||
|  | 	  /* TODO: explore non-synchronous send/recv? */ | ||
|  | 
 | ||
|  | 	  if (I == O) { | ||
|  | 	       R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS); | ||
|  | 	        | ||
|  | 	       for (i = 0; i < n_pes; ++i) { | ||
|  | 		    int pe = sched[i]; | ||
|  | 		    if (my_pe == pe) { | ||
|  | 			 if (rbo[pe] != sbo[pe]) | ||
|  | 			      memmove(O + rbo[pe], O + sbo[pe], | ||
|  | 				      sbs[pe] * sizeof(R)); | ||
|  | 		    } | ||
|  | 		    else { | ||
|  | 			 memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R)); | ||
|  | 			 MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE, | ||
|  | 				      pe, (my_pe * n_pes + pe) & 0x7fff, | ||
|  | 				      O + rbo[pe], (int) (rbs[pe]), | ||
|  | 				      FFTW_MPI_TYPE, | ||
|  | 				      pe, (pe * n_pes + my_pe) & 0x7fff, | ||
|  | 				      comm, &status); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 
 | ||
|  | 	       X(ifree)(buf); | ||
|  | 	  } | ||
|  | 	  else { /* I != O */ | ||
|  | 	       for (i = 0; i < n_pes; ++i) { | ||
|  | 		    int pe = sched[i]; | ||
|  | 		    if (my_pe == pe) | ||
|  | 			 memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R)); | ||
|  | 		    else | ||
|  | 			 MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]), | ||
|  | 				      FFTW_MPI_TYPE, | ||
|  | 				      pe, (my_pe * n_pes + pe) & 0x7fff, | ||
|  | 				      O + rbo[pe], (int) (rbs[pe]), | ||
|  | 				      FFTW_MPI_TYPE, | ||
|  | 				      pe, (pe * n_pes + my_pe) & 0x7fff, | ||
|  | 				      comm, &status); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static void apply(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      plan_rdft *cld1, *cld2, *cld2rest, *cld3; | ||
|  | 
 | ||
|  |      /* transpose locally to get contiguous chunks */ | ||
|  |      cld1 = (plan_rdft *) ego->cld1; | ||
|  |      if (cld1) { | ||
|  | 	  cld1->apply(ego->cld1, I, O); | ||
|  | 	   | ||
|  | 	  if (ego->preserve_input) I = O; | ||
|  | 
 | ||
|  | 	  /* transpose chunks globally */ | ||
|  | 	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, | ||
|  | 			   ego->send_block_sizes, ego->send_block_offsets, | ||
|  | 			   ego->recv_block_sizes, ego->recv_block_offsets, | ||
|  | 			   ego->comm, O, I); | ||
|  |      } | ||
|  |      else if (ego->preserve_input) { | ||
|  | 	  /* transpose chunks globally */ | ||
|  | 	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, | ||
|  | 			   ego->send_block_sizes, ego->send_block_offsets, | ||
|  | 			   ego->recv_block_sizes, ego->recv_block_offsets, | ||
|  | 			   ego->comm, I, O); | ||
|  | 
 | ||
|  | 	  I = O; | ||
|  |      } | ||
|  |      else { | ||
|  | 	  /* transpose chunks globally */ | ||
|  | 	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, | ||
|  | 			   ego->send_block_sizes, ego->send_block_offsets, | ||
|  | 			   ego->recv_block_sizes, ego->recv_block_offsets, | ||
|  | 			   ego->comm, I, I); | ||
|  |      } | ||
|  | 
 | ||
|  |      /* transpose locally, again, to get ordinary row-major;
 | ||
|  | 	this may take two transposes if the block sizes are unequal | ||
|  | 	(3 subplans, two of which operate on disjoint data) */ | ||
|  |      cld2 = (plan_rdft *) ego->cld2; | ||
|  |      cld2->apply(ego->cld2, I, O); | ||
|  |      cld2rest = (plan_rdft *) ego->cld2rest; | ||
|  |      if (cld2rest) { | ||
|  | 	  cld2rest->apply(ego->cld2rest, | ||
|  | 			  I + ego->rest_Ioff, O + ego->rest_Ooff); | ||
|  | 	  cld3 = (plan_rdft *) ego->cld3; | ||
|  | 	  if (cld3) | ||
|  | 	       cld3->apply(ego->cld3, O, O); | ||
|  | 	  /* else TRANSPOSED_OUT is true and user wants O transposed */ | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const S *ego, const problem *p_, | ||
|  | 		      const planner *plnr) | ||
|  | { | ||
|  |      const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; | ||
|  |      /* Note: this is *not* UGLY for out-of-place, destroy-input plans;
 | ||
|  | 	the planner often prefers transpose-pairwise to transpose-alltoall, | ||
|  | 	at least with LAM MPI on my machine. */ | ||
|  |      return (1 | ||
|  | 	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) | ||
|  | 					  && p->I != p->O)) | ||
|  | 	     && ONLY_TRANSPOSEDP(p->flags)); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_awake)(ego->cld1, wakefulness); | ||
|  |      X(plan_awake)(ego->cld2, wakefulness); | ||
|  |      X(plan_awake)(ego->cld2rest, wakefulness); | ||
|  |      X(plan_awake)(ego->cld3, wakefulness); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(ifree0)(ego->sched); | ||
|  |      X(ifree0)(ego->send_block_sizes); | ||
|  |      MPI_Comm_free(&ego->comm); | ||
|  |      X(plan_destroy_internal)(ego->cld3); | ||
|  |      X(plan_destroy_internal)(ego->cld2rest); | ||
|  |      X(plan_destroy_internal)(ego->cld2); | ||
|  |      X(plan_destroy_internal)(ego->cld1); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))",  | ||
|  | 	      ego->preserve_input==2 ?"/p":"", | ||
|  | 	      ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); | ||
|  | } | ||
|  | 
 | ||
|  | /* Given a process which_pe and a number of processes npes, fills
 | ||
|  |    the array sched[npes] with a sequence of processes to communicate | ||
|  |    with for a deadlock-free, optimum-overlap all-to-all communication. | ||
|  |    (All processes must call this routine to get their own schedules.) | ||
|  |    The schedule can be re-ordered arbitrarily as long as all processes | ||
|  |    apply the same permutation to their schedules. | ||
|  | 
 | ||
|  |    The algorithm here is based upon the one described in: | ||
|  |        J. A. M. Schreuder, "Constructing timetables for sport | ||
|  |        competitions," Mathematical Programming Study 13, pp. 58-67 (1980).  | ||
|  |    In a sport competition, you have N teams and want every team to | ||
|  |    play every other team in as short a time as possible (maximum overlap | ||
|  |    between games).  This timetabling problem is therefore identical | ||
|  |    to that of an all-to-all communications problem.  In our case, there | ||
|  |    is one wrinkle: as part of the schedule, the process must do | ||
|  |    some data transfer with itself (local data movement), analogous | ||
|  |    to a requirement that each team "play itself" in addition to other | ||
|  |    teams.  With this wrinkle, it turns out that an optimal timetable | ||
|  |    (N parallel games) can be constructed for any N, not just for even | ||
|  |    N as in the original problem described by Schreuder. | ||
|  | */ | ||
|  | static void fill1_comm_sched(int *sched, int which_pe, int npes) | ||
|  | { | ||
|  |      int pe, i, n, s = 0; | ||
|  |      A(which_pe >= 0 && which_pe < npes); | ||
|  |      if (npes % 2 == 0) { | ||
|  | 	  n = npes; | ||
|  | 	  sched[s++] = which_pe; | ||
|  |      } | ||
|  |      else | ||
|  | 	  n = npes + 1; | ||
|  |      for (pe = 0; pe < n - 1; ++pe) { | ||
|  | 	  if (npes % 2 == 0) { | ||
|  | 	       if (pe == which_pe) sched[s++] = npes - 1; | ||
|  | 	       else if (npes - 1 == which_pe) sched[s++] = pe; | ||
|  | 	  } | ||
|  | 	  else if (pe == which_pe) sched[s++] = pe; | ||
|  | 
 | ||
|  | 	  if (pe != which_pe && which_pe < n - 1) { | ||
|  | 	       i = (pe - which_pe + (n - 1)) % (n - 1); | ||
|  | 	       if (i < n/2) | ||
|  | 		    sched[s++] = (pe + i) % (n - 1); | ||
|  | 	        | ||
|  | 	       i = (which_pe - pe + (n - 1)) % (n - 1); | ||
|  | 	       if (i < n/2) | ||
|  | 		    sched[s++] = (pe - i + (n - 1)) % (n - 1); | ||
|  | 	  } | ||
|  |      } | ||
|  |      A(s == npes); | ||
|  | } | ||
|  | 
 | ||
|  | /* Sort the communication schedule sched for npes so that the schedule
 | ||
|  |    on process sortpe is ascending or descending (!ascending).  This is | ||
|  |    necessary to allow in-place transposes when the problem does not | ||
|  |    divide equally among the processes.  In this case there is one | ||
|  |    process where the incoming blocks are bigger/smaller than the | ||
|  |    outgoing blocks and thus have to be received in | ||
|  |    descending/ascending order, respectively, to avoid overwriting data | ||
|  |    before it is sent. */ | ||
|  | static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending) | ||
|  | { | ||
|  |      int *sortsched, i; | ||
|  |      sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER); | ||
|  |      fill1_comm_sched(sortsched, sortpe, npes); | ||
|  |      if (ascending) | ||
|  | 	  for (i = 0; i < npes; ++i) | ||
|  | 	       sortsched[npes + sortsched[i]] = sched[i]; | ||
|  |      else | ||
|  | 	  for (i = 0; i < npes; ++i) | ||
|  | 	       sortsched[2*npes - 1 - sortsched[i]] = sched[i]; | ||
|  |      for (i = 0; i < npes; ++i) | ||
|  | 	  sched[i] = sortsched[npes + i]; | ||
|  |      X(ifree)(sortsched); | ||
|  | } | ||
|  | 
 | ||
|  | /* make the plans to do the post-MPI transpositions (shared with
 | ||
|  |    transpose-alltoall) */ | ||
|  | int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr, | ||
|  | 			      R *I, R *O, int my_pe, | ||
|  | 			      plan **cld2, plan **cld2rest, plan **cld3, | ||
|  | 			      INT *rest_Ioff, INT *rest_Ooff) | ||
|  | { | ||
|  |      INT vn = p->vn; | ||
|  |      INT b = p->block; | ||
|  |      INT bt = XM(block)(p->ny, p->tblock, my_pe); | ||
|  |      INT nxb = p->nx / b; /* number of equal-sized blocks */ | ||
|  |      INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */ | ||
|  | 
 | ||
|  |      *cld2 = *cld2rest = *cld3 = NULL; | ||
|  |      *rest_Ioff = *rest_Ooff = 0; | ||
|  | 
 | ||
|  |      if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) { | ||
|  | 	  INT nx = p->nx * vn; | ||
|  | 	  b *= vn; | ||
|  | 	  *cld2 = X(mkplan_f_d)(plnr,  | ||
|  | 				X(mkproblem_rdft_0_d)(X(mktensor_3d) | ||
|  | 						      (nxb, bt * b, b, | ||
|  | 						       bt, b, nx, | ||
|  | 						       b, 1, 1), | ||
|  | 						      I, O), | ||
|  | 				0, 0, NO_SLOW); | ||
|  | 	  if (!*cld2) goto nada; | ||
|  | 
 | ||
|  | 	  if (nxr > 0) { | ||
|  | 	       *rest_Ioff = nxb * bt * b; | ||
|  | 	       *rest_Ooff = nxb * b; | ||
|  | 	       b = nxr * vn; | ||
|  | 	       *cld2rest = X(mkplan_f_d)(plnr, | ||
|  | 					 X(mkproblem_rdft_0_d)(X(mktensor_2d) | ||
|  | 							       (bt, b, nx, | ||
|  | 								b, 1, 1), | ||
|  | 							       I + *rest_Ioff, | ||
|  | 							       O + *rest_Ooff), | ||
|  |                                         0, 0, NO_SLOW); | ||
|  |                if (!*cld2rest) goto nada; | ||
|  | 	  } | ||
|  |      } | ||
|  |      else { | ||
|  | 	  *cld2 = X(mkplan_f_d)(plnr, | ||
|  | 				X(mkproblem_rdft_0_d)( | ||
|  | 				     X(mktensor_4d) | ||
|  | 				     (nxb, bt * b * vn, bt * b * vn, | ||
|  | 				      bt, b * vn, vn, | ||
|  | 				      b, vn, bt * vn, | ||
|  | 				      vn, 1, 1), | ||
|  | 				     I, O), | ||
|  | 				0, 0, NO_SLOW); | ||
|  | 	  if (!*cld2) goto nada; | ||
|  | 
 | ||
|  | 	  *rest_Ioff = *rest_Ooff = nxb * bt * b * vn; | ||
|  | 	  *cld2rest = X(mkplan_f_d)(plnr, | ||
|  | 				    X(mkproblem_rdft_0_d)( | ||
|  | 					 X(mktensor_3d) | ||
|  | 					 (bt, nxr * vn, vn, | ||
|  | 					  nxr, vn, bt * vn, | ||
|  | 					  vn, 1, 1), | ||
|  | 					 I + *rest_Ioff, O + *rest_Ooff), | ||
|  | 				    0, 0, NO_SLOW); | ||
|  | 	  if (!*cld2rest) goto nada; | ||
|  | 
 | ||
|  | 	  if (!(p->flags & TRANSPOSED_OUT)) { | ||
|  | 	       *cld3 = X(mkplan_f_d)(plnr, | ||
|  | 				     X(mkproblem_rdft_0_d)( | ||
|  | 					  X(mktensor_3d) | ||
|  | 					  (p->nx, bt * vn, vn, | ||
|  | 					   bt, vn, p->nx * vn, | ||
|  | 					   vn, 1, 1), | ||
|  | 					  O, O), | ||
|  | 				     0, 0, NO_SLOW); | ||
|  | 	       if (!*cld3) goto nada; | ||
|  | 	  } | ||
|  |      } | ||
|  | 
 | ||
|  |      return 1; | ||
|  | 
 | ||
|  | nada: | ||
|  |      X(plan_destroy_internal)(*cld3); | ||
|  |      X(plan_destroy_internal)(*cld2rest); | ||
|  |      X(plan_destroy_internal)(*cld2); | ||
|  |      *cld2 = *cld2rest = *cld3 = NULL; | ||
|  |      return 0; | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const S *ego = (const S *) ego_; | ||
|  |      const problem_mpi_transpose *p; | ||
|  |      P *pln; | ||
|  |      plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; | ||
|  |      INT b, bt, vn, rest_Ioff, rest_Ooff; | ||
|  |      INT *sbs, *sbo, *rbs, *rbo; | ||
|  |      int pe, my_pe, n_pes, sort_pe = -1, ascending = 1; | ||
|  |      R *I, *O; | ||
|  |      static const plan_adt padt = { | ||
|  |           XM(transpose_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      UNUSED(ego); | ||
|  | 
 | ||
|  |      if (!applicable(ego, p_, plnr)) | ||
|  |           return (plan *) 0; | ||
|  | 
 | ||
|  |      p = (const problem_mpi_transpose *) p_; | ||
|  |      vn = p->vn; | ||
|  |      I = p->I; O = p->O; | ||
|  | 
 | ||
|  |      MPI_Comm_rank(p->comm, &my_pe); | ||
|  |      MPI_Comm_size(p->comm, &n_pes); | ||
|  | 
 | ||
|  |      b = XM(block)(p->nx, p->block, my_pe); | ||
|  |       | ||
|  |      if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */ | ||
|  | 	  cld1 = X(mkplan_f_d)(plnr,  | ||
|  | 			       X(mkproblem_rdft_0_d)(X(mktensor_3d) | ||
|  | 						     (b, p->ny * vn, vn, | ||
|  | 						      p->ny, vn, b * vn, | ||
|  | 						      vn, 1, 1), | ||
|  | 						     I, O), | ||
|  | 			       0, 0, NO_SLOW); | ||
|  | 	  if (XM(any_true)(!cld1, p->comm)) goto nada; | ||
|  |      } | ||
|  |      if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O; | ||
|  | 
 | ||
|  |      if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe, | ||
|  | 						 &cld2, &cld2rest, &cld3, | ||
|  | 						 &rest_Ioff, &rest_Ooff), | ||
|  | 		      p->comm)) goto nada; | ||
|  | 
 | ||
|  |      pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); | ||
|  | 
 | ||
|  |      pln->cld1 = cld1; | ||
|  |      pln->cld2 = cld2; | ||
|  |      pln->cld2rest = cld2rest; | ||
|  |      pln->rest_Ioff = rest_Ioff; | ||
|  |      pln->rest_Ooff = rest_Ooff; | ||
|  |      pln->cld3 = cld3; | ||
|  |      pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); | ||
|  | 
 | ||
|  |      MPI_Comm_dup(p->comm, &pln->comm); | ||
|  | 
 | ||
|  |      n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block), | ||
|  | 			   XM(num_blocks)(p->ny, p->tblock)); | ||
|  | 
 | ||
|  |      /* Compute sizes/offsets of blocks to exchange between processors */ | ||
|  |      sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS); | ||
|  |      sbo = sbs + n_pes; | ||
|  |      rbs = sbo + n_pes; | ||
|  |      rbo = rbs + n_pes; | ||
|  |      b = XM(block)(p->nx, p->block, my_pe); | ||
|  |      bt = XM(block)(p->ny, p->tblock, my_pe); | ||
|  |      for (pe = 0; pe < n_pes; ++pe) { | ||
|  | 	  INT db, dbt; /* destination block sizes */ | ||
|  | 	  db = XM(block)(p->nx, p->block, pe); | ||
|  | 	  dbt = XM(block)(p->ny, p->tblock, pe); | ||
|  | 
 | ||
|  | 	  sbs[pe] = b * dbt * vn; | ||
|  | 	  sbo[pe] = pe * (b * p->tblock) * vn; | ||
|  | 	  rbs[pe] = db * bt * vn; | ||
|  | 	  rbo[pe] = pe * (p->block * bt) * vn; | ||
|  | 
 | ||
|  | 	  if (db * dbt > 0 && db * p->tblock != p->block * dbt) { | ||
|  | 	       A(sort_pe == -1); /* only one process should need sorting */ | ||
|  | 	       sort_pe = pe; | ||
|  | 	       ascending = db * p->tblock > p->block * dbt; | ||
|  | 	  } | ||
|  |      } | ||
|  |      pln->n_pes = n_pes; | ||
|  |      pln->my_pe = my_pe; | ||
|  |      pln->send_block_sizes = sbs; | ||
|  |      pln->send_block_offsets = sbo; | ||
|  |      pln->recv_block_sizes = rbs; | ||
|  |      pln->recv_block_offsets = rbo; | ||
|  | 
 | ||
|  |      if (my_pe >= n_pes) { | ||
|  | 	  pln->sched = 0; /* this process is not doing anything */ | ||
|  |      } | ||
|  |      else { | ||
|  | 	  pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS); | ||
|  | 	  fill1_comm_sched(pln->sched, my_pe, n_pes); | ||
|  | 	  if (sort_pe >= 0) | ||
|  | 	       sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending); | ||
|  |      } | ||
|  | 
 | ||
|  |      X(ops_zero)(&pln->super.super.ops); | ||
|  |      if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); | ||
|  |      if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); | ||
|  |      if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); | ||
|  |      if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); | ||
|  |      /* FIXME: should MPI operations be counted in "other" somehow? */ | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | 
 | ||
|  |  nada: | ||
|  |      X(plan_destroy_internal)(cld3); | ||
|  |      X(plan_destroy_internal)(cld2rest); | ||
|  |      X(plan_destroy_internal)(cld2); | ||
|  |      X(plan_destroy_internal)(cld1); | ||
|  |      return (plan *) 0; | ||
|  | } | ||
|  | 
 | ||
|  | static solver *mksolver(int preserve_input) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      slv->preserve_input = preserve_input; | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void XM(transpose_pairwise_register)(planner *p) | ||
|  | { | ||
|  |      int preserve_input; | ||
|  |      for (preserve_input = 0; preserve_input <= 1; ++preserve_input) | ||
|  | 	  REGISTER_SOLVER(p, mksolver(preserve_input)); | ||
|  | } |