488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Distributed transposes using a sequence of carefully scheduled
							 | 
						||
| 
								 | 
							
								   pairwise exchanges.  This has the advantage that it can be done
							 | 
						||
| 
								 | 
							
								   in-place, or out-of-place while preserving the input, using buffer
							 | 
						||
| 
								 | 
							
								   space proportional to the local size divided by the number of
							 | 
						||
| 
								 | 
							
								   processes (i.e. to the total array size divided by the number of
							 | 
						||
| 
								 | 
							
								   processes squared). */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "mpi-transpose.h"
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     solver super;
							 | 
						||
| 
								 | 
							
								     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
							 | 
						||
| 
								 | 
							
								} S;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     plan_mpi_transpose super;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     plan *cld1, *cld2, *cld2rest, *cld3;
							 | 
						||
| 
								 | 
							
								     INT rest_Ioff, rest_Ooff;
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     int n_pes, my_pe, *sched;
							 | 
						||
| 
								 | 
							
								     INT *send_block_sizes, *send_block_offsets;
							 | 
						||
| 
								 | 
							
								     INT *recv_block_sizes, *recv_block_offsets;
							 | 
						||
| 
								 | 
							
								     MPI_Comm comm;
							 | 
						||
| 
								 | 
							
								     int preserve_input;
							 | 
						||
| 
								 | 
							
								} P;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void transpose_chunks(int *sched, int n_pes, int my_pe,
							 | 
						||
| 
								 | 
							
											     INT *sbs, INT *sbo, INT *rbs, INT *rbo,
							 | 
						||
| 
								 | 
							
											     MPI_Comm comm,
							 | 
						||
| 
								 | 
							
											     R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     if (sched) {
							 | 
						||
| 
								 | 
							
									  int i;
							 | 
						||
| 
								 | 
							
									  MPI_Status status;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  /* TODO: explore non-synchronous send/recv? */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  if (I == O) {
							 | 
						||
| 
								 | 
							
									       R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS);
							 | 
						||
| 
								 | 
							
									       
							 | 
						||
| 
								 | 
							
									       for (i = 0; i < n_pes; ++i) {
							 | 
						||
| 
								 | 
							
										    int pe = sched[i];
							 | 
						||
| 
								 | 
							
										    if (my_pe == pe) {
							 | 
						||
| 
								 | 
							
											 if (rbo[pe] != sbo[pe])
							 | 
						||
| 
								 | 
							
											      memmove(O + rbo[pe], O + sbo[pe],
							 | 
						||
| 
								 | 
							
												      sbs[pe] * sizeof(R));
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
										    else {
							 | 
						||
| 
								 | 
							
											 memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R));
							 | 
						||
| 
								 | 
							
											 MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE,
							 | 
						||
| 
								 | 
							
												      pe, (my_pe * n_pes + pe) & 0x7fff,
							 | 
						||
| 
								 | 
							
												      O + rbo[pe], (int) (rbs[pe]),
							 | 
						||
| 
								 | 
							
												      FFTW_MPI_TYPE,
							 | 
						||
| 
								 | 
							
												      pe, (pe * n_pes + my_pe) & 0x7fff,
							 | 
						||
| 
								 | 
							
												      comm, &status);
							 | 
						||
| 
								 | 
							
										    }
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									       X(ifree)(buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  else { /* I != O */
							 | 
						||
| 
								 | 
							
									       for (i = 0; i < n_pes; ++i) {
							 | 
						||
| 
								 | 
							
										    int pe = sched[i];
							 | 
						||
| 
								 | 
							
										    if (my_pe == pe)
							 | 
						||
| 
								 | 
							
											 memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R));
							 | 
						||
| 
								 | 
							
										    else
							 | 
						||
| 
								 | 
							
											 MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]),
							 | 
						||
| 
								 | 
							
												      FFTW_MPI_TYPE,
							 | 
						||
| 
								 | 
							
												      pe, (my_pe * n_pes + pe) & 0x7fff,
							 | 
						||
| 
								 | 
							
												      O + rbo[pe], (int) (rbs[pe]),
							 | 
						||
| 
								 | 
							
												      FFTW_MPI_TYPE,
							 | 
						||
| 
								 | 
							
												      pe, (pe * n_pes + my_pe) & 0x7fff,
							 | 
						||
| 
								 | 
							
												      comm, &status);
							 | 
						||
| 
								 | 
							
									       }
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     plan_rdft *cld1, *cld2, *cld2rest, *cld3;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* transpose locally to get contiguous chunks */
							 | 
						||
| 
								 | 
							
								     cld1 = (plan_rdft *) ego->cld1;
							 | 
						||
| 
								 | 
							
								     if (cld1) {
							 | 
						||
| 
								 | 
							
									  cld1->apply(ego->cld1, I, O);
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  if (ego->preserve_input) I = O;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  /* transpose chunks globally */
							 | 
						||
| 
								 | 
							
									  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
							 | 
						||
| 
								 | 
							
											   ego->send_block_sizes, ego->send_block_offsets,
							 | 
						||
| 
								 | 
							
											   ego->recv_block_sizes, ego->recv_block_offsets,
							 | 
						||
| 
								 | 
							
											   ego->comm, O, I);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else if (ego->preserve_input) {
							 | 
						||
| 
								 | 
							
									  /* transpose chunks globally */
							 | 
						||
| 
								 | 
							
									  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
							 | 
						||
| 
								 | 
							
											   ego->send_block_sizes, ego->send_block_offsets,
							 | 
						||
| 
								 | 
							
											   ego->recv_block_sizes, ego->recv_block_offsets,
							 | 
						||
| 
								 | 
							
											   ego->comm, I, O);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  I = O;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else {
							 | 
						||
| 
								 | 
							
									  /* transpose chunks globally */
							 | 
						||
| 
								 | 
							
									  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
							 | 
						||
| 
								 | 
							
											   ego->send_block_sizes, ego->send_block_offsets,
							 | 
						||
| 
								 | 
							
											   ego->recv_block_sizes, ego->recv_block_offsets,
							 | 
						||
| 
								 | 
							
											   ego->comm, I, I);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* transpose locally, again, to get ordinary row-major;
							 | 
						||
| 
								 | 
							
									this may take two transposes if the block sizes are unequal
							 | 
						||
| 
								 | 
							
									(3 subplans, two of which operate on disjoint data) */
							 | 
						||
| 
								 | 
							
								     cld2 = (plan_rdft *) ego->cld2;
							 | 
						||
| 
								 | 
							
								     cld2->apply(ego->cld2, I, O);
							 | 
						||
| 
								 | 
							
								     cld2rest = (plan_rdft *) ego->cld2rest;
							 | 
						||
| 
								 | 
							
								     if (cld2rest) {
							 | 
						||
| 
								 | 
							
									  cld2rest->apply(ego->cld2rest,
							 | 
						||
| 
								 | 
							
											  I + ego->rest_Ioff, O + ego->rest_Ooff);
							 | 
						||
| 
								 | 
							
									  cld3 = (plan_rdft *) ego->cld3;
							 | 
						||
| 
								 | 
							
									  if (cld3)
							 | 
						||
| 
								 | 
							
									       cld3->apply(ego->cld3, O, O);
							 | 
						||
| 
								 | 
							
									  /* else TRANSPOSED_OUT is true and user wants O transposed */
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable(const S *ego, const problem *p_,
							 | 
						||
| 
								 | 
							
										      const planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
							 | 
						||
| 
								 | 
							
								     /* Note: this is *not* UGLY for out-of-place, destroy-input plans;
							 | 
						||
| 
								 | 
							
									the planner often prefers transpose-pairwise to transpose-alltoall,
							 | 
						||
| 
								 | 
							
									at least with LAM MPI on my machine. */
							 | 
						||
| 
								 | 
							
								     return (1
							 | 
						||
| 
								 | 
							
									     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
							 | 
						||
| 
								 | 
							
													  && p->I != p->O))
							 | 
						||
| 
								 | 
							
									     && ONLY_TRANSPOSEDP(p->flags));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void awake(plan *ego_, enum wakefulness wakefulness)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld1, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld2, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld2rest, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld3, wakefulness);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void destroy(plan *ego_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(ifree0)(ego->sched);
							 | 
						||
| 
								 | 
							
								     X(ifree0)(ego->send_block_sizes);
							 | 
						||
| 
								 | 
							
								     MPI_Comm_free(&ego->comm);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld3);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld2rest);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld2);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld1);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void print(const plan *ego_, printer *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))", 
							 | 
						||
| 
								 | 
							
									      ego->preserve_input==2 ?"/p":"",
							 | 
						||
| 
								 | 
							
									      ego->cld1, ego->cld2, ego->cld2rest, ego->cld3);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Given a process which_pe and a number of processes npes, fills
							 | 
						||
| 
								 | 
							
								   the array sched[npes] with a sequence of processes to communicate
							 | 
						||
| 
								 | 
							
								   with for a deadlock-free, optimum-overlap all-to-all communication.
							 | 
						||
| 
								 | 
							
								   (All processes must call this routine to get their own schedules.)
							 | 
						||
| 
								 | 
							
								   The schedule can be re-ordered arbitrarily as long as all processes
							 | 
						||
| 
								 | 
							
								   apply the same permutation to their schedules.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   The algorithm here is based upon the one described in:
							 | 
						||
| 
								 | 
							
								       J. A. M. Schreuder, "Constructing timetables for sport
							 | 
						||
| 
								 | 
							
								       competitions," Mathematical Programming Study 13, pp. 58-67 (1980). 
							 | 
						||
| 
								 | 
							
								   In a sport competition, you have N teams and want every team to
							 | 
						||
| 
								 | 
							
								   play every other team in as short a time as possible (maximum overlap
							 | 
						||
| 
								 | 
							
								   between games).  This timetabling problem is therefore identical
							 | 
						||
| 
								 | 
							
								   to that of an all-to-all communications problem.  In our case, there
							 | 
						||
| 
								 | 
							
								   is one wrinkle: as part of the schedule, the process must do
							 | 
						||
| 
								 | 
							
								   some data transfer with itself (local data movement), analogous
							 | 
						||
| 
								 | 
							
								   to a requirement that each team "play itself" in addition to other
							 | 
						||
| 
								 | 
							
								   teams.  With this wrinkle, it turns out that an optimal timetable
							 | 
						||
| 
								 | 
							
								   (N parallel games) can be constructed for any N, not just for even
							 | 
						||
| 
								 | 
							
								   N as in the original problem described by Schreuder.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static void fill1_comm_sched(int *sched, int which_pe, int npes)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     int pe, i, n, s = 0;
							 | 
						||
| 
								 | 
							
								     A(which_pe >= 0 && which_pe < npes);
							 | 
						||
| 
								 | 
							
								     if (npes % 2 == 0) {
							 | 
						||
| 
								 | 
							
									  n = npes;
							 | 
						||
| 
								 | 
							
									  sched[s++] = which_pe;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  n = npes + 1;
							 | 
						||
| 
								 | 
							
								     for (pe = 0; pe < n - 1; ++pe) {
							 | 
						||
| 
								 | 
							
									  if (npes % 2 == 0) {
							 | 
						||
| 
								 | 
							
									       if (pe == which_pe) sched[s++] = npes - 1;
							 | 
						||
| 
								 | 
							
									       else if (npes - 1 == which_pe) sched[s++] = pe;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  else if (pe == which_pe) sched[s++] = pe;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  if (pe != which_pe && which_pe < n - 1) {
							 | 
						||
| 
								 | 
							
									       i = (pe - which_pe + (n - 1)) % (n - 1);
							 | 
						||
| 
								 | 
							
									       if (i < n/2)
							 | 
						||
| 
								 | 
							
										    sched[s++] = (pe + i) % (n - 1);
							 | 
						||
| 
								 | 
							
									       
							 | 
						||
| 
								 | 
							
									       i = (which_pe - pe + (n - 1)) % (n - 1);
							 | 
						||
| 
								 | 
							
									       if (i < n/2)
							 | 
						||
| 
								 | 
							
										    sched[s++] = (pe - i + (n - 1)) % (n - 1);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     A(s == npes);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Sort the communication schedule sched for npes so that the schedule
							 | 
						||
| 
								 | 
							
								   on process sortpe is ascending or descending (!ascending).  This is
							 | 
						||
| 
								 | 
							
								   necessary to allow in-place transposes when the problem does not
							 | 
						||
| 
								 | 
							
								   divide equally among the processes.  In this case there is one
							 | 
						||
| 
								 | 
							
								   process where the incoming blocks are bigger/smaller than the
							 | 
						||
| 
								 | 
							
								   outgoing blocks and thus have to be received in
							 | 
						||
| 
								 | 
							
								   descending/ascending order, respectively, to avoid overwriting data
							 | 
						||
| 
								 | 
							
								   before it is sent. */
							 | 
						||
| 
								 | 
							
								static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     int *sortsched, i;
							 | 
						||
| 
								 | 
							
								     sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER);
							 | 
						||
| 
								 | 
							
								     fill1_comm_sched(sortsched, sortpe, npes);
							 | 
						||
| 
								 | 
							
								     if (ascending)
							 | 
						||
| 
								 | 
							
									  for (i = 0; i < npes; ++i)
							 | 
						||
| 
								 | 
							
									       sortsched[npes + sortsched[i]] = sched[i];
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  for (i = 0; i < npes; ++i)
							 | 
						||
| 
								 | 
							
									       sortsched[2*npes - 1 - sortsched[i]] = sched[i];
							 | 
						||
| 
								 | 
							
								     for (i = 0; i < npes; ++i)
							 | 
						||
| 
								 | 
							
									  sched[i] = sortsched[npes + i];
							 | 
						||
| 
								 | 
							
								     X(ifree)(sortsched);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* make the plans to do the post-MPI transpositions (shared with
							 | 
						||
| 
								 | 
							
								   transpose-alltoall) */
							 | 
						||
| 
								 | 
							
								int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr,
							 | 
						||
| 
								 | 
							
											      R *I, R *O, int my_pe,
							 | 
						||
| 
								 | 
							
											      plan **cld2, plan **cld2rest, plan **cld3,
							 | 
						||
| 
								 | 
							
											      INT *rest_Ioff, INT *rest_Ooff)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     INT vn = p->vn;
							 | 
						||
| 
								 | 
							
								     INT b = p->block;
							 | 
						||
| 
								 | 
							
								     INT bt = XM(block)(p->ny, p->tblock, my_pe);
							 | 
						||
| 
								 | 
							
								     INT nxb = p->nx / b; /* number of equal-sized blocks */
							 | 
						||
| 
								 | 
							
								     INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     *cld2 = *cld2rest = *cld3 = NULL;
							 | 
						||
| 
								 | 
							
								     *rest_Ioff = *rest_Ooff = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) {
							 | 
						||
| 
								 | 
							
									  INT nx = p->nx * vn;
							 | 
						||
| 
								 | 
							
									  b *= vn;
							 | 
						||
| 
								 | 
							
									  *cld2 = X(mkplan_f_d)(plnr, 
							 | 
						||
| 
								 | 
							
												X(mkproblem_rdft_0_d)(X(mktensor_3d)
							 | 
						||
| 
								 | 
							
														      (nxb, bt * b, b,
							 | 
						||
| 
								 | 
							
														       bt, b, nx,
							 | 
						||
| 
								 | 
							
														       b, 1, 1),
							 | 
						||
| 
								 | 
							
														      I, O),
							 | 
						||
| 
								 | 
							
												0, 0, NO_SLOW);
							 | 
						||
| 
								 | 
							
									  if (!*cld2) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  if (nxr > 0) {
							 | 
						||
| 
								 | 
							
									       *rest_Ioff = nxb * bt * b;
							 | 
						||
| 
								 | 
							
									       *rest_Ooff = nxb * b;
							 | 
						||
| 
								 | 
							
									       b = nxr * vn;
							 | 
						||
| 
								 | 
							
									       *cld2rest = X(mkplan_f_d)(plnr,
							 | 
						||
| 
								 | 
							
													 X(mkproblem_rdft_0_d)(X(mktensor_2d)
							 | 
						||
| 
								 | 
							
															       (bt, b, nx,
							 | 
						||
| 
								 | 
							
																b, 1, 1),
							 | 
						||
| 
								 | 
							
															       I + *rest_Ioff,
							 | 
						||
| 
								 | 
							
															       O + *rest_Ooff),
							 | 
						||
| 
								 | 
							
								                                        0, 0, NO_SLOW);
							 | 
						||
| 
								 | 
							
								               if (!*cld2rest) goto nada;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else {
							 | 
						||
| 
								 | 
							
									  *cld2 = X(mkplan_f_d)(plnr,
							 | 
						||
| 
								 | 
							
												X(mkproblem_rdft_0_d)(
							 | 
						||
| 
								 | 
							
												     X(mktensor_4d)
							 | 
						||
| 
								 | 
							
												     (nxb, bt * b * vn, bt * b * vn,
							 | 
						||
| 
								 | 
							
												      bt, b * vn, vn,
							 | 
						||
| 
								 | 
							
												      b, vn, bt * vn,
							 | 
						||
| 
								 | 
							
												      vn, 1, 1),
							 | 
						||
| 
								 | 
							
												     I, O),
							 | 
						||
| 
								 | 
							
												0, 0, NO_SLOW);
							 | 
						||
| 
								 | 
							
									  if (!*cld2) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  *rest_Ioff = *rest_Ooff = nxb * bt * b * vn;
							 | 
						||
| 
								 | 
							
									  *cld2rest = X(mkplan_f_d)(plnr,
							 | 
						||
| 
								 | 
							
												    X(mkproblem_rdft_0_d)(
							 | 
						||
| 
								 | 
							
													 X(mktensor_3d)
							 | 
						||
| 
								 | 
							
													 (bt, nxr * vn, vn,
							 | 
						||
| 
								 | 
							
													  nxr, vn, bt * vn,
							 | 
						||
| 
								 | 
							
													  vn, 1, 1),
							 | 
						||
| 
								 | 
							
													 I + *rest_Ioff, O + *rest_Ooff),
							 | 
						||
| 
								 | 
							
												    0, 0, NO_SLOW);
							 | 
						||
| 
								 | 
							
									  if (!*cld2rest) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  if (!(p->flags & TRANSPOSED_OUT)) {
							 | 
						||
| 
								 | 
							
									       *cld3 = X(mkplan_f_d)(plnr,
							 | 
						||
| 
								 | 
							
												     X(mkproblem_rdft_0_d)(
							 | 
						||
| 
								 | 
							
													  X(mktensor_3d)
							 | 
						||
| 
								 | 
							
													  (p->nx, bt * vn, vn,
							 | 
						||
| 
								 | 
							
													   bt, vn, p->nx * vn,
							 | 
						||
| 
								 | 
							
													   vn, 1, 1),
							 | 
						||
| 
								 | 
							
													  O, O),
							 | 
						||
| 
								 | 
							
												     0, 0, NO_SLOW);
							 | 
						||
| 
								 | 
							
									       if (!*cld3) goto nada;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								nada:
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(*cld3);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(*cld2rest);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(*cld2);
							 | 
						||
| 
								 | 
							
								     *cld2 = *cld2rest = *cld3 = NULL;
							 | 
						||
| 
								 | 
							
								     return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const S *ego = (const S *) ego_;
							 | 
						||
| 
								 | 
							
								     const problem_mpi_transpose *p;
							 | 
						||
| 
								 | 
							
								     P *pln;
							 | 
						||
| 
								 | 
							
								     plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0;
							 | 
						||
| 
								 | 
							
								     INT b, bt, vn, rest_Ioff, rest_Ooff;
							 | 
						||
| 
								 | 
							
								     INT *sbs, *sbo, *rbs, *rbo;
							 | 
						||
| 
								 | 
							
								     int pe, my_pe, n_pes, sort_pe = -1, ascending = 1;
							 | 
						||
| 
								 | 
							
								     R *I, *O;
							 | 
						||
| 
								 | 
							
								     static const plan_adt padt = {
							 | 
						||
| 
								 | 
							
								          XM(transpose_solve), awake, print, destroy
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     UNUSED(ego);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!applicable(ego, p_, plnr))
							 | 
						||
| 
								 | 
							
								          return (plan *) 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p = (const problem_mpi_transpose *) p_;
							 | 
						||
| 
								 | 
							
								     vn = p->vn;
							 | 
						||
| 
								 | 
							
								     I = p->I; O = p->O;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     MPI_Comm_rank(p->comm, &my_pe);
							 | 
						||
| 
								 | 
							
								     MPI_Comm_size(p->comm, &n_pes);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     b = XM(block)(p->nx, p->block, my_pe);
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */
							 | 
						||
| 
								 | 
							
									  cld1 = X(mkplan_f_d)(plnr, 
							 | 
						||
| 
								 | 
							
											       X(mkproblem_rdft_0_d)(X(mktensor_3d)
							 | 
						||
| 
								 | 
							
														     (b, p->ny * vn, vn,
							 | 
						||
| 
								 | 
							
														      p->ny, vn, b * vn,
							 | 
						||
| 
								 | 
							
														      vn, 1, 1),
							 | 
						||
| 
								 | 
							
														     I, O),
							 | 
						||
| 
								 | 
							
											       0, 0, NO_SLOW);
							 | 
						||
| 
								 | 
							
									  if (XM(any_true)(!cld1, p->comm)) goto nada;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe,
							 | 
						||
| 
								 | 
							
														 &cld2, &cld2rest, &cld3,
							 | 
						||
| 
								 | 
							
														 &rest_Ioff, &rest_Ooff),
							 | 
						||
| 
								 | 
							
										      p->comm)) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln->cld1 = cld1;
							 | 
						||
| 
								 | 
							
								     pln->cld2 = cld2;
							 | 
						||
| 
								 | 
							
								     pln->cld2rest = cld2rest;
							 | 
						||
| 
								 | 
							
								     pln->rest_Ioff = rest_Ioff;
							 | 
						||
| 
								 | 
							
								     pln->rest_Ooff = rest_Ooff;
							 | 
						||
| 
								 | 
							
								     pln->cld3 = cld3;
							 | 
						||
| 
								 | 
							
								     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     MPI_Comm_dup(p->comm, &pln->comm);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block),
							 | 
						||
| 
								 | 
							
											   XM(num_blocks)(p->ny, p->tblock));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* Compute sizes/offsets of blocks to exchange between processors */
							 | 
						||
| 
								 | 
							
								     sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS);
							 | 
						||
| 
								 | 
							
								     sbo = sbs + n_pes;
							 | 
						||
| 
								 | 
							
								     rbs = sbo + n_pes;
							 | 
						||
| 
								 | 
							
								     rbo = rbs + n_pes;
							 | 
						||
| 
								 | 
							
								     b = XM(block)(p->nx, p->block, my_pe);
							 | 
						||
| 
								 | 
							
								     bt = XM(block)(p->ny, p->tblock, my_pe);
							 | 
						||
| 
								 | 
							
								     for (pe = 0; pe < n_pes; ++pe) {
							 | 
						||
| 
								 | 
							
									  INT db, dbt; /* destination block sizes */
							 | 
						||
| 
								 | 
							
									  db = XM(block)(p->nx, p->block, pe);
							 | 
						||
| 
								 | 
							
									  dbt = XM(block)(p->ny, p->tblock, pe);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  sbs[pe] = b * dbt * vn;
							 | 
						||
| 
								 | 
							
									  sbo[pe] = pe * (b * p->tblock) * vn;
							 | 
						||
| 
								 | 
							
									  rbs[pe] = db * bt * vn;
							 | 
						||
| 
								 | 
							
									  rbo[pe] = pe * (p->block * bt) * vn;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									  if (db * dbt > 0 && db * p->tblock != p->block * dbt) {
							 | 
						||
| 
								 | 
							
									       A(sort_pe == -1); /* only one process should need sorting */
							 | 
						||
| 
								 | 
							
									       sort_pe = pe;
							 | 
						||
| 
								 | 
							
									       ascending = db * p->tblock > p->block * dbt;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     pln->n_pes = n_pes;
							 | 
						||
| 
								 | 
							
								     pln->my_pe = my_pe;
							 | 
						||
| 
								 | 
							
								     pln->send_block_sizes = sbs;
							 | 
						||
| 
								 | 
							
								     pln->send_block_offsets = sbo;
							 | 
						||
| 
								 | 
							
								     pln->recv_block_sizes = rbs;
							 | 
						||
| 
								 | 
							
								     pln->recv_block_offsets = rbo;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (my_pe >= n_pes) {
							 | 
						||
| 
								 | 
							
									  pln->sched = 0; /* this process is not doing anything */
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else {
							 | 
						||
| 
								 | 
							
									  pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS);
							 | 
						||
| 
								 | 
							
									  fill1_comm_sched(pln->sched, my_pe, n_pes);
							 | 
						||
| 
								 | 
							
									  if (sort_pe >= 0)
							 | 
						||
| 
								 | 
							
									       sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     /* FIXME: should MPI operations be counted in "other" somehow? */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return &(pln->super.super);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 nada:
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld3);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld2rest);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld2);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld1);
							 | 
						||
| 
								 | 
							
								     return (plan *) 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static solver *mksolver(int preserve_input)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
							 | 
						||
| 
								 | 
							
								     S *slv = MKSOLVER(S, &sadt);
							 | 
						||
| 
								 | 
							
								     slv->preserve_input = preserve_input;
							 | 
						||
| 
								 | 
							
								     return &(slv->super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void XM(transpose_pairwise_register)(planner *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     int preserve_input;
							 | 
						||
| 
								 | 
							
								     for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
							 | 
						||
| 
								 | 
							
									  REGISTER_SOLVER(p, mksolver(preserve_input));
							 | 
						||
| 
								 | 
							
								}
							 |