229 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			229 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* This file was automatically generated --- DO NOT EDIT */
							 | 
						||
| 
								 | 
							
								/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "rdft/codelet-rdft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 41 FP additions, 32 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 23 additions, 14 multiplications, 18 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 51 stack variables, 1 constants, and 16 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "rdft/simd/hc2cbv.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT m;
							 | 
						||
| 
								 | 
							
									  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
							 | 
						||
| 
								 | 
							
									       V Tm, Tp, TF, TE, Th, Tv, Tc, Tu, T4, Tk, Tf, Tl, T7, Tn, Ta;
							 | 
						||
| 
								 | 
							
									       V To, T2, T3, Td, Te, T5, T6, T8, T9, Tg, Tb, TL, TK, TJ, TM;
							 | 
						||
| 
								 | 
							
									       V TN, TC, TG, TB, TD, TH, TI, Ti, Tq, T1, Tj, Tr, Ts, Tw, Ty;
							 | 
						||
| 
								 | 
							
									       V Tt, Tx, Tz, TA;
							 | 
						||
| 
								 | 
							
									       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       T4 = VFNMSCONJ(T3, T2);
							 | 
						||
| 
								 | 
							
									       Tk = VFMACONJ(T3, T2);
							 | 
						||
| 
								 | 
							
									       Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       Tf = VFNMSCONJ(Te, Td);
							 | 
						||
| 
								 | 
							
									       Tl = VFMACONJ(Te, Td);
							 | 
						||
| 
								 | 
							
									       T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       T7 = VFNMSCONJ(T6, T5);
							 | 
						||
| 
								 | 
							
									       Tn = VFMACONJ(T6, T5);
							 | 
						||
| 
								 | 
							
									       T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       Ta = VFMSCONJ(T9, T8);
							 | 
						||
| 
								 | 
							
									       To = VFMACONJ(T9, T8);
							 | 
						||
| 
								 | 
							
									       Tm = VSUB(Tk, Tl);
							 | 
						||
| 
								 | 
							
									       Tp = VSUB(Tn, To);
							 | 
						||
| 
								 | 
							
									       TF = VADD(Tn, To);
							 | 
						||
| 
								 | 
							
									       TE = VADD(Tk, Tl);
							 | 
						||
| 
								 | 
							
									       Tg = VSUB(T7, Ta);
							 | 
						||
| 
								 | 
							
									       Th = VFMA(LDK(KP707106781), Tg, Tf);
							 | 
						||
| 
								 | 
							
									       Tv = VFNMS(LDK(KP707106781), Tg, Tf);
							 | 
						||
| 
								 | 
							
									       Tb = VADD(T7, Ta);
							 | 
						||
| 
								 | 
							
									       Tc = VFMA(LDK(KP707106781), Tb, T4);
							 | 
						||
| 
								 | 
							
									       Tu = VFNMS(LDK(KP707106781), Tb, T4);
							 | 
						||
| 
								 | 
							
									       TL = VADD(TE, TF);
							 | 
						||
| 
								 | 
							
									       TJ = LDW(&(W[0]));
							 | 
						||
| 
								 | 
							
									       TK = VZMULI(TJ, VFMAI(Th, Tc));
							 | 
						||
| 
								 | 
							
									       TM = VADD(TK, TL);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[0]), TM, ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       TN = VCONJ(VSUB(TL, TK));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[0]), TN, -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       TB = LDW(&(W[TWVL * 8]));
							 | 
						||
| 
								 | 
							
									       TC = VZMULI(TB, VFMAI(Tv, Tu));
							 | 
						||
| 
								 | 
							
									       TD = LDW(&(W[TWVL * 6]));
							 | 
						||
| 
								 | 
							
									       TG = VZMUL(TD, VSUB(TE, TF));
							 | 
						||
| 
								 | 
							
									       TH = VADD(TC, TG);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       TI = VCONJ(VSUB(TG, TC));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       T1 = LDW(&(W[TWVL * 12]));
							 | 
						||
| 
								 | 
							
									       Ti = VZMULI(T1, VFNMSI(Th, Tc));
							 | 
						||
| 
								 | 
							
									       Tj = LDW(&(W[TWVL * 10]));
							 | 
						||
| 
								 | 
							
									       Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
							 | 
						||
| 
								 | 
							
									       Tr = VADD(Ti, Tq);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       Ts = VCONJ(VSUB(Tq, Ti));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       Tt = LDW(&(W[TWVL * 4]));
							 | 
						||
| 
								 | 
							
									       Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
							 | 
						||
| 
								 | 
							
									       Tx = LDW(&(W[TWVL * 2]));
							 | 
						||
| 
								 | 
							
									       Ty = VZMUL(Tx, VFMAI(Tp, Tm));
							 | 
						||
| 
								 | 
							
									       Tz = VADD(Tw, Ty);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       TA = VCONJ(VSUB(Ty, Tw));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     VLEAVE();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const tw_instr twinstr[] = {
							 | 
						||
| 
								 | 
							
								     VTW(1, 1),
							 | 
						||
| 
								 | 
							
								     VTW(1, 2),
							 | 
						||
| 
								 | 
							
								     VTW(1, 3),
							 | 
						||
| 
								 | 
							
								     VTW(1, 4),
							 | 
						||
| 
								 | 
							
								     VTW(1, 5),
							 | 
						||
| 
								 | 
							
								     VTW(1, 6),
							 | 
						||
| 
								 | 
							
								     VTW(1, 7),
							 | 
						||
| 
								 | 
							
								     { TW_NEXT, VL, 0 }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, { 23, 14, 18, 0 } };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
							 | 
						||
| 
								 | 
							
								     X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * This function contains 41 FP additions, 16 FP multiplications,
							 | 
						||
| 
								 | 
							
								 * (or, 41 additions, 16 multiplications, 0 fused multiply/add),
							 | 
						||
| 
								 | 
							
								 * 55 stack variables, 1 constants, and 16 memory accesses
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#include "rdft/simd/hc2cbv.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									  INT m;
							 | 
						||
| 
								 | 
							
									  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
							 | 
						||
| 
								 | 
							
									       V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
							 | 
						||
| 
								 | 
							
									       V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
							 | 
						||
| 
								 | 
							
									       V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
							 | 
						||
| 
								 | 
							
									       V Ty, Tz, Tx, TF, TD, TM, TE, TL;
							 | 
						||
| 
								 | 
							
									       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       T4 = VCONJ(T3);
							 | 
						||
| 
								 | 
							
									       Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       Ti = VCONJ(Th);
							 | 
						||
| 
								 | 
							
									       T5 = VSUB(T2, T4);
							 | 
						||
| 
								 | 
							
									       Tj = VSUB(Tg, Ti);
							 | 
						||
| 
								 | 
							
									       To = VADD(T2, T4);
							 | 
						||
| 
								 | 
							
									       Tp = VADD(Tg, Ti);
							 | 
						||
| 
								 | 
							
									       Tq = VSUB(To, Tp);
							 | 
						||
| 
								 | 
							
									       TI = VADD(To, Tp);
							 | 
						||
| 
								 | 
							
									       T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       T8 = VCONJ(T7);
							 | 
						||
| 
								 | 
							
									       Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       Tb = VCONJ(Ta);
							 | 
						||
| 
								 | 
							
									       T9 = VSUB(T6, T8);
							 | 
						||
| 
								 | 
							
									       Td = VSUB(Tb, Tc);
							 | 
						||
| 
								 | 
							
									       Te = VMUL(LDK(KP707106781), VADD(T9, Td));
							 | 
						||
| 
								 | 
							
									       Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
							 | 
						||
| 
								 | 
							
									       Tr = VADD(T6, T8);
							 | 
						||
| 
								 | 
							
									       Ts = VADD(Tb, Tc);
							 | 
						||
| 
								 | 
							
									       Tt = VBYI(VSUB(Tr, Ts));
							 | 
						||
| 
								 | 
							
									       TJ = VADD(Tr, Ts);
							 | 
						||
| 
								 | 
							
									       TP = VADD(TI, TJ);
							 | 
						||
| 
								 | 
							
									       Tn = LDW(&(W[TWVL * 10]));
							 | 
						||
| 
								 | 
							
									       Tu = VZMUL(Tn, VSUB(Tq, Tt));
							 | 
						||
| 
								 | 
							
									       Tf = VADD(T5, Te);
							 | 
						||
| 
								 | 
							
									       Tl = VBYI(VADD(Tj, Tk));
							 | 
						||
| 
								 | 
							
									       T1 = LDW(&(W[TWVL * 12]));
							 | 
						||
| 
								 | 
							
									       Tm = VZMULI(T1, VSUB(Tf, Tl));
							 | 
						||
| 
								 | 
							
									       TN = LDW(&(W[0]));
							 | 
						||
| 
								 | 
							
									       TO = VZMULI(TN, VADD(Tl, Tf));
							 | 
						||
| 
								 | 
							
									       Tv = VADD(Tm, Tu);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       TR = VCONJ(VSUB(TP, TO));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[0]), TR, -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       Tw = VCONJ(VSUB(Tu, Tm));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       TQ = VADD(TO, TP);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[0]), TQ, ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									       TB = LDW(&(W[TWVL * 2]));
							 | 
						||
| 
								 | 
							
									       TC = VZMUL(TB, VADD(Tq, Tt));
							 | 
						||
| 
								 | 
							
									       TH = LDW(&(W[TWVL * 6]));
							 | 
						||
| 
								 | 
							
									       TK = VZMUL(TH, VSUB(TI, TJ));
							 | 
						||
| 
								 | 
							
									       Ty = VBYI(VSUB(Tk, Tj));
							 | 
						||
| 
								 | 
							
									       Tz = VSUB(T5, Te);
							 | 
						||
| 
								 | 
							
									       Tx = LDW(&(W[TWVL * 4]));
							 | 
						||
| 
								 | 
							
									       TA = VZMULI(Tx, VADD(Ty, Tz));
							 | 
						||
| 
								 | 
							
									       TF = LDW(&(W[TWVL * 8]));
							 | 
						||
| 
								 | 
							
									       TG = VZMULI(TF, VSUB(Tz, Ty));
							 | 
						||
| 
								 | 
							
									       TD = VADD(TA, TC);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       TM = VCONJ(VSUB(TK, TG));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
							 | 
						||
| 
								 | 
							
									       TE = VCONJ(VSUB(TC, TA));
							 | 
						||
| 
								 | 
							
									       ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
							 | 
						||
| 
								 | 
							
									       TL = VADD(TG, TK);
							 | 
						||
| 
								 | 
							
									       ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     VLEAVE();
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const tw_instr twinstr[] = {
							 | 
						||
| 
								 | 
							
								     VTW(1, 1),
							 | 
						||
| 
								 | 
							
								     VTW(1, 2),
							 | 
						||
| 
								 | 
							
								     VTW(1, 3),
							 | 
						||
| 
								 | 
							
								     VTW(1, 4),
							 | 
						||
| 
								 | 
							
								     VTW(1, 5),
							 | 
						||
| 
								 | 
							
								     VTW(1, 6),
							 | 
						||
| 
								 | 
							
								     VTW(1, 7),
							 | 
						||
| 
								 | 
							
								     { TW_NEXT, VL, 0 }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, { 41, 16, 0, 0 } };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
							 | 
						||
| 
								 | 
							
								     X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif
							 |