353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Complex DFTs of rank == 1 via six-step algorithm. */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "mpi-dft.h"
							 | 
						||
| 
								 | 
							
								#include "mpi-transpose.h"
							 | 
						||
| 
								 | 
							
								#include "dft/dft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     solver super;
							 | 
						||
| 
								 | 
							
								     rdftapply apply; /* apply_ddft_first or apply_ddft_last */
							 | 
						||
| 
								 | 
							
								     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
							 | 
						||
| 
								 | 
							
								} S;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     plan_mpi_dft super;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     triggen *t;
							 | 
						||
| 
								 | 
							
								     plan *cldt, *cld_ddft, *cld_dft;
							 | 
						||
| 
								 | 
							
								     INT roff, ioff;
							 | 
						||
| 
								 | 
							
								     int preserve_input;
							 | 
						||
| 
								 | 
							
								     INT vn, xmin, xmax, xs, m, r;
							 | 
						||
| 
								 | 
							
								} P;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
							 | 
						||
| 
								 | 
							
								     INT im, iv;
							 | 
						||
| 
								 | 
							
								     for (im = 0; im < m; ++im)
							 | 
						||
| 
								 | 
							
									  for (iv = 0; iv < vn; ++iv) {
							 | 
						||
| 
								 | 
							
									       /* TODO: modify/inline rotate function
							 | 
						||
| 
								 | 
							
										  so that it can do whole vn vector at once? */
							 | 
						||
| 
								 | 
							
									       R c[2];
							 | 
						||
| 
								 | 
							
									       rotate(t, ir * im, *xr, *xi, c);
							 | 
						||
| 
								 | 
							
									       *xr = c[0]; *xi = c[1];
							 | 
						||
| 
								 | 
							
									       xr += 2; xi += 2;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* radix-r DFT of size r*m.  This is equivalent to an m x r 2d DFT,
							 | 
						||
| 
								 | 
							
								   plus twiddle factors between the size-m and size-r 1d DFTs, where
							 | 
						||
| 
								 | 
							
								   the m dimension is initially distributed.  The output is transposed
							 | 
						||
| 
								 | 
							
								   to r x m where the r dimension is distributed. 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   This algorithm follows the general sequence:
							 | 
						||
| 
								 | 
							
								        global transpose (m x r -> r x m)
							 | 
						||
| 
								 | 
							
								        DFTs of size m
							 | 
						||
| 
								 | 
							
									multiply by twiddles + global transpose (r x m -> m x r)
							 | 
						||
| 
								 | 
							
									DFTs of size r
							 | 
						||
| 
								 | 
							
									global transpose (m x r -> r x m)
							 | 
						||
| 
								 | 
							
								   where the multiplication by twiddles can come before or after
							 | 
						||
| 
								 | 
							
								   the middle transpose.  The first/last transposes are omitted
							 | 
						||
| 
								 | 
							
								   for SCRAMBLED_IN/OUT formats, respectively.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   However, we wish to exploit our dft-rank1-bigvec solver, which
							 | 
						||
| 
								 | 
							
								   solves a vector of distributed DFTs via transpose+dft+transpose.
							 | 
						||
| 
								 | 
							
								   Therefore, we can group *either* the DFTs of size m *or* the
							 | 
						||
| 
								 | 
							
								   DFTs of size r with their surrounding transposes as a single
							 | 
						||
| 
								 | 
							
								   distributed-DFT (ddft) plan.  These two variations correspond to
							 | 
						||
| 
								 | 
							
								   apply_ddft_first or apply_ddft_last, respectively.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply_ddft_first(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     plan_dft *cld_dft;
							 | 
						||
| 
								 | 
							
								     plan_rdft *cldt, *cld_ddft;
							 | 
						||
| 
								 | 
							
								     INT roff, ioff, im, mmax, ms, r, vn;
							 | 
						||
| 
								 | 
							
								     triggen *t;
							 | 
						||
| 
								 | 
							
								     R *dI, *dO;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* distributed size-m DFTs, with output in m x r format */
							 | 
						||
| 
								 | 
							
								     cld_ddft = (plan_rdft *) ego->cld_ddft;
							 | 
						||
| 
								 | 
							
								     cld_ddft->apply(ego->cld_ddft, I, O);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     cldt = (plan_rdft *) ego->cldt;
							 | 
						||
| 
								 | 
							
								     if (ego->preserve_input || !cldt) I = O;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* twiddle multiplications, followed by 1d DFTs of size-r */
							 | 
						||
| 
								 | 
							
								     cld_dft = (plan_dft *) ego->cld_dft;
							 | 
						||
| 
								 | 
							
								     roff = ego->roff; ioff = ego->ioff;
							 | 
						||
| 
								 | 
							
								     mmax = ego->xmax; ms = ego->xs;
							 | 
						||
| 
								 | 
							
								     t = ego->t; r = ego->r; vn = ego->vn;
							 | 
						||
| 
								 | 
							
								     dI = O; dO = I;
							 | 
						||
| 
								 | 
							
								     for (im = ego->xmin; im <= mmax; ++im) {
							 | 
						||
| 
								 | 
							
									  do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
							 | 
						||
| 
								 | 
							
									  cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
							 | 
						||
| 
								 | 
							
									  dI += ms; dO += ms;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
							 | 
						||
| 
								 | 
							
								     if (cldt) 
							 | 
						||
| 
								 | 
							
									  cldt->apply((plan *) cldt, I, O);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply_ddft_last(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     plan_dft *cld_dft;
							 | 
						||
| 
								 | 
							
								     plan_rdft *cldt, *cld_ddft;
							 | 
						||
| 
								 | 
							
								     INT roff, ioff, ir, rmax, rs, m, vn;
							 | 
						||
| 
								 | 
							
								     triggen *t;
							 | 
						||
| 
								 | 
							
								     R *dI, *dO0, *dO;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
							 | 
						||
| 
								 | 
							
								     cldt = (plan_rdft *) ego->cldt;
							 | 
						||
| 
								 | 
							
								     if (cldt) {
							 | 
						||
| 
								 | 
							
									  cldt->apply((plan *) cldt, I, O);
							 | 
						||
| 
								 | 
							
									  dI = O;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else 
							 | 
						||
| 
								 | 
							
									  dI = I;
							 | 
						||
| 
								 | 
							
								     if (ego->preserve_input) dO = O; else dO = I;
							 | 
						||
| 
								 | 
							
								     dO0 = dO;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* 1d DFTs of size m, followed by twiddle multiplications */
							 | 
						||
| 
								 | 
							
								     cld_dft = (plan_dft *) ego->cld_dft;
							 | 
						||
| 
								 | 
							
								     roff = ego->roff; ioff = ego->ioff;
							 | 
						||
| 
								 | 
							
								     rmax = ego->xmax; rs = ego->xs;
							 | 
						||
| 
								 | 
							
								     t = ego->t; m = ego->m; vn = ego->vn;
							 | 
						||
| 
								 | 
							
								     for (ir = ego->xmin; ir <= rmax; ++ir) {
							 | 
						||
| 
								 | 
							
									  cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
							 | 
						||
| 
								 | 
							
									  do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
							 | 
						||
| 
								 | 
							
									  dI += rs; dO += rs;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* distributed size-r DFTs, with output in r x m format */
							 | 
						||
| 
								 | 
							
								     cld_ddft = (plan_rdft *) ego->cld_ddft;
							 | 
						||
| 
								 | 
							
								     cld_ddft->apply(ego->cld_ddft, dO0, O);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable(const S *ego, const problem *p_,
							 | 
						||
| 
								 | 
							
										      const planner *plnr,
							 | 
						||
| 
								 | 
							
										      INT *r, INT rblock[2], INT mblock[2])
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
							 | 
						||
| 
								 | 
							
								     int n_pes;
							 | 
						||
| 
								 | 
							
								     MPI_Comm_size(p->comm, &n_pes);
							 | 
						||
| 
								 | 
							
								     return (1
							 | 
						||
| 
								 | 
							
									     && p->sz->rnk == 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     && ONLY_SCRAMBLEDP(p->flags)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
							 | 
						||
| 
								 | 
							
								                                          && p->I != p->O))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
							 | 
						||
| 
								 | 
							
									     && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
							 | 
						||
| 
								 | 
							
								                 || !XM(dft_serial_applicable)(p))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     /* disallow if dft-rank1-bigvec is applicable since the
							 | 
						||
| 
								 | 
							
										data distribution may be slightly different (ugh!) */
							 | 
						||
| 
								 | 
							
									     && (p->vn < n_pes || p->flags)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     && (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
							 | 
						||
| 
								 | 
							
												       p->flags, p->sign,
							 | 
						||
| 
								 | 
							
												       rblock, mblock))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									     /* ddft_first or last has substantial advantages in the
							 | 
						||
| 
								 | 
							
										bigvec transpositions for the common case where
							 | 
						||
| 
								 | 
							
										n_pes == n/r or r, respectively */
							 | 
						||
| 
								 | 
							
									     && (!NO_UGLYP(plnr)
							 | 
						||
| 
								 | 
							
										 || !(*r == n_pes && ego->apply == apply_ddft_first)
							 | 
						||
| 
								 | 
							
										 || !(p->sz->dims[0].n / *r == n_pes 
							 | 
						||
| 
								 | 
							
										      && ego->apply == apply_ddft_last))
							 | 
						||
| 
								 | 
							
									  );
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void awake(plan *ego_, enum wakefulness wakefulness)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cldt, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld_dft, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld_ddft, wakefulness);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     switch (wakefulness) {
							 | 
						||
| 
								 | 
							
								         case SLEEPY:
							 | 
						||
| 
								 | 
							
								              X(triggen_destroy)(ego->t); ego->t = 0;
							 | 
						||
| 
								 | 
							
								              break;
							 | 
						||
| 
								 | 
							
								         default:
							 | 
						||
| 
								 | 
							
								              ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
							 | 
						||
| 
								 | 
							
								              break;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void destroy(plan *ego_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cldt);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld_dft);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld_ddft);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void print(const plan *ego_, printer *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
							 | 
						||
| 
								 | 
							
									      ego->r,
							 | 
						||
| 
								 | 
							
									      ego->super.apply == apply_ddft_first ? "/first" : "/last",
							 | 
						||
| 
								 | 
							
									      ego->preserve_input==2 ?"/p":"",
							 | 
						||
| 
								 | 
							
									      ego->cld_ddft, ego->cld_dft, ego->cldt);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const S *ego = (const S *) ego_;
							 | 
						||
| 
								 | 
							
								     const problem_mpi_dft *p;
							 | 
						||
| 
								 | 
							
								     P *pln;
							 | 
						||
| 
								 | 
							
								     plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
							 | 
						||
| 
								 | 
							
								     R *ri, *ii, *ro, *io, *I, *O;
							 | 
						||
| 
								 | 
							
								     INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
							 | 
						||
| 
								 | 
							
								     int my_pe, n_pes, preserve_input, ddft_first;
							 | 
						||
| 
								 | 
							
								     dtensor *sz;
							 | 
						||
| 
								 | 
							
								     static const plan_adt padt = {
							 | 
						||
| 
								 | 
							
								          XM(dft_solve), awake, print, destroy
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     UNUSED(ego);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!applicable(ego, p_, plnr, &r, rblock, mblock))
							 | 
						||
| 
								 | 
							
								          return (plan *) 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p = (const problem_mpi_dft *) p_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     MPI_Comm_rank(p->comm, &my_pe);
							 | 
						||
| 
								 | 
							
								     MPI_Comm_size(p->comm, &n_pes);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     m = p->sz->dims[0].n / r;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* some hackery so that we can plan both ddft_first and ddft_last
							 | 
						||
| 
								 | 
							
									as if they were ddft_first */
							 | 
						||
| 
								 | 
							
								     if ((ddft_first = (ego->apply == apply_ddft_first))) {
							 | 
						||
| 
								 | 
							
									  rp = r; mp = m;
							 | 
						||
| 
								 | 
							
									  mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
							 | 
						||
| 
								 | 
							
									  mpb = XM(block)(mp, mpblock[OB], my_pe);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else {
							 | 
						||
| 
								 | 
							
									  rp = m; mp = r;
							 | 
						||
| 
								 | 
							
									  mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
							 | 
						||
| 
								 | 
							
									  mpb = XM(block)(mp, mpblock[IB], my_pe);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     sz = XM(mkdtensor)(1);
							 | 
						||
| 
								 | 
							
								     sz->dims[0].n = mp;
							 | 
						||
| 
								 | 
							
								     sz->dims[0].b[IB] = mpblock[IB];
							 | 
						||
| 
								 | 
							
								     sz->dims[0].b[OB] = mpblock[OB];
							 | 
						||
| 
								 | 
							
								     I = (ddft_first || !preserve_input) ? p->I : p->O;
							 | 
						||
| 
								 | 
							
								     O = p->O;
							 | 
						||
| 
								 | 
							
								     cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
							 | 
						||
| 
								 | 
							
														      I, O, p->comm, p->sign,
							 | 
						||
| 
								 | 
							
														      RANK1_BIGVEC_ONLY));
							 | 
						||
| 
								 | 
							
								     if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
							 | 
						||
| 
								 | 
							
								     O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I, 
							 | 
						||
| 
								 | 
							
									       rp * p->vn * 2);
							 | 
						||
| 
								 | 
							
								     X(extract_reim)(p->sign, I, &ri, &ii);
							 | 
						||
| 
								 | 
							
								     X(extract_reim)(p->sign, O, &ro, &io);
							 | 
						||
| 
								 | 
							
								     cld_dft = X(mkplan_d)(plnr,
							 | 
						||
| 
								 | 
							
											X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
							 | 
						||
| 
								 | 
							
													   X(mktensor_1d)(p->vn, 2, 2),
							 | 
						||
| 
								 | 
							
													   ri, ii, ro, io));
							 | 
						||
| 
								 | 
							
								     if (XM(any_true)(!cld_dft, p->comm)) goto nada;
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
							 | 
						||
| 
								 | 
							
									  I = (ddft_first && preserve_input) ? p->O : p->I;
							 | 
						||
| 
								 | 
							
									  O = p->O;
							 | 
						||
| 
								 | 
							
									  cldt = X(mkplan_d)(plnr,
							 | 
						||
| 
								 | 
							
											     XM(mkproblem_transpose)(
							 | 
						||
| 
								 | 
							
												  m, r, p->vn * 2,
							 | 
						||
| 
								 | 
							
												  I, O,
							 | 
						||
| 
								 | 
							
												  ddft_first ? mblock[OB] : mblock[IB],
							 | 
						||
| 
								 | 
							
												  ddft_first ? rblock[OB] : rblock[IB],
							 | 
						||
| 
								 | 
							
												  p->comm, 0));
							 | 
						||
| 
								 | 
							
									  if (XM(any_true)(!cldt, p->comm)) goto nada;	  
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln->cld_ddft = cld_ddft;
							 | 
						||
| 
								 | 
							
								     pln->cld_dft = cld_dft;
							 | 
						||
| 
								 | 
							
								     pln->cldt = cldt;
							 | 
						||
| 
								 | 
							
								     pln->preserve_input = preserve_input;
							 | 
						||
| 
								 | 
							
								     X(extract_reim)(p->sign, p->O, &ro, &io);
							 | 
						||
| 
								 | 
							
								     pln->roff = ro - p->O;
							 | 
						||
| 
								 | 
							
								     pln->ioff = io - p->O;
							 | 
						||
| 
								 | 
							
								     pln->vn = p->vn;
							 | 
						||
| 
								 | 
							
								     pln->m = m;
							 | 
						||
| 
								 | 
							
								     pln->r = r;
							 | 
						||
| 
								 | 
							
								     pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
							 | 
						||
| 
								 | 
							
								     pln->xmax = pln->xmin + mpb - 1;
							 | 
						||
| 
								 | 
							
								     pln->xs = rp * p->vn * 2;
							 | 
						||
| 
								 | 
							
								     pln->t = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
								          double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
							 | 
						||
| 
								 | 
							
								          pln->super.super.ops.mul += 8 * n0;
							 | 
						||
| 
								 | 
							
								          pln->super.super.ops.add += 4 * n0;
							 | 
						||
| 
								 | 
							
								          pln->super.super.ops.other += 8 * n0;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return &(pln->super.super);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 nada:
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cldt);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld_dft);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld_ddft);
							 | 
						||
| 
								 | 
							
								     return (plan *) 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static solver *mksolver(rdftapply apply, int preserve_input)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
							 | 
						||
| 
								 | 
							
								     S *slv = MKSOLVER(S, &sadt);
							 | 
						||
| 
								 | 
							
								     slv->apply = apply;
							 | 
						||
| 
								 | 
							
								     slv->preserve_input = preserve_input;
							 | 
						||
| 
								 | 
							
								     return &(slv->super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void XM(dft_rank1_register)(planner *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
							 | 
						||
| 
								 | 
							
								     unsigned int iapply;
							 | 
						||
| 
								 | 
							
								     int preserve_input;
							 | 
						||
| 
								 | 
							
								     for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
							 | 
						||
| 
								 | 
							
									  for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
							 | 
						||
| 
								 | 
							
									       REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
							 | 
						||
| 
								 | 
							
								}
							 |