197 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			197 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:00 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 32 FP additions, 28 FP multiplications, | ||
|  |  * (or, 14 additions, 10 multiplications, 18 fused multiply/add), | ||
|  |  * 22 stack variables, 5 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cbIII.h"
 | ||
|  | 
 | ||
|  | static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | ||
|  | 	       E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn; | ||
|  | 	       T1 = Cr[WS(csr, 2)]; | ||
|  | 	       To = Ci[WS(csi, 2)]; | ||
|  | 	       { | ||
|  | 		    E T2, T3, T4, T5, T6, T7; | ||
|  | 		    T2 = Cr[WS(csr, 4)]; | ||
|  | 		    T3 = Cr[0]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T5 = Cr[WS(csr, 3)]; | ||
|  | 		    T6 = Cr[WS(csr, 1)]; | ||
|  | 		    T7 = T5 + T6; | ||
|  | 		    T8 = T4 + T7; | ||
|  | 		    Tt = T5 - T6; | ||
|  | 		    Ta = T7 - T4; | ||
|  | 		    Ts = T2 - T3; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, Td, Tl, Tf, Tg, Tm; | ||
|  | 		    Tc = Ci[WS(csi, 3)]; | ||
|  | 		    Td = Ci[WS(csi, 1)]; | ||
|  | 		    Tl = Tc + Td; | ||
|  | 		    Tf = Ci[WS(csi, 4)]; | ||
|  | 		    Tg = Ci[0]; | ||
|  | 		    Tm = Tf + Tg; | ||
|  | 		    Te = Tc - Td; | ||
|  | 		    Tq = Tl + Tm; | ||
|  | 		    Th = Tf - Tg; | ||
|  | 		    Tn = Tl - Tm; | ||
|  | 	       } | ||
|  | 	       R0[0] = KP2_000000000 * (T1 + T8); | ||
|  | 	       R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); | ||
|  | 	       { | ||
|  | 		    E Ti, Tk, Tb, Tj, T9; | ||
|  | 		    Ti = FMA(KP618033988, Th, Te); | ||
|  | 		    Tk = FNMS(KP618033988, Te, Th); | ||
|  | 		    T9 = FMS(KP250000000, T8, T1); | ||
|  | 		    Tb = FNMS(KP559016994, Ta, T9); | ||
|  | 		    Tj = FMA(KP559016994, Ta, T9); | ||
|  | 		    R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb)); | ||
|  | 		    R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj)); | ||
|  | 		    R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb))); | ||
|  | 		    R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj))); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tu, Tw, Tr, Tv, Tp; | ||
|  | 		    Tu = FMA(KP618033988, Tt, Ts); | ||
|  | 		    Tw = FNMS(KP618033988, Ts, Tt); | ||
|  | 		    Tp = FMA(KP250000000, Tn, To); | ||
|  | 		    Tr = FMA(KP559016994, Tq, Tp); | ||
|  | 		    Tv = FNMS(KP559016994, Tq, Tp); | ||
|  | 		    R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr))); | ||
|  | 		    R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv)); | ||
|  | 		    R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr))); | ||
|  | 		    R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv)); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 10, "r2cbIII_10", { 14, 10, 18, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 32 FP additions, 16 FP multiplications, | ||
|  |  * (or, 26 additions, 10 multiplications, 6 fused multiply/add), | ||
|  |  * 22 stack variables, 5 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cbIII.h"
 | ||
|  | 
 | ||
|  | static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | ||
|  |      DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | ||
|  | 	       E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn; | ||
|  | 	       T1 = Cr[WS(csr, 2)]; | ||
|  | 	       To = Ci[WS(csi, 2)]; | ||
|  | 	       { | ||
|  | 		    E T2, T3, T4, T5, T6, T7; | ||
|  | 		    T2 = Cr[WS(csr, 4)]; | ||
|  | 		    T3 = Cr[0]; | ||
|  | 		    T4 = T2 + T3; | ||
|  | 		    T5 = Cr[WS(csr, 3)]; | ||
|  | 		    T6 = Cr[WS(csr, 1)]; | ||
|  | 		    T7 = T5 + T6; | ||
|  | 		    T8 = T4 + T7; | ||
|  | 		    Tq = T5 - T6; | ||
|  | 		    Ta = KP1_118033988 * (T7 - T4); | ||
|  | 		    Tp = T2 - T3; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc, Td, Tm, Tf, Tg, Tl; | ||
|  | 		    Tc = Ci[WS(csi, 4)]; | ||
|  | 		    Td = Ci[0]; | ||
|  | 		    Tm = Tc + Td; | ||
|  | 		    Tf = Ci[WS(csi, 1)]; | ||
|  | 		    Tg = Ci[WS(csi, 3)]; | ||
|  | 		    Tl = Tg + Tf; | ||
|  | 		    Te = Tc - Td; | ||
|  | 		    Ts = KP1_118033988 * (Tl + Tm); | ||
|  | 		    Th = Tf - Tg; | ||
|  | 		    Tn = Tl - Tm; | ||
|  | 	       } | ||
|  | 	       R0[0] = KP2_000000000 * (T1 + T8); | ||
|  | 	       R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); | ||
|  | 	       { | ||
|  | 		    E Ti, Tj, Tb, Tk, T9; | ||
|  | 		    Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te); | ||
|  | 		    Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te); | ||
|  | 		    T9 = FNMS(KP2_000000000, T1, KP500000000 * T8); | ||
|  | 		    Tb = T9 - Ta; | ||
|  | 		    Tk = T9 + Ta; | ||
|  | 		    R0[WS(rs, 1)] = Tb + Ti; | ||
|  | 		    R0[WS(rs, 3)] = Tk + Tj; | ||
|  | 		    R0[WS(rs, 4)] = Ti - Tb; | ||
|  | 		    R0[WS(rs, 2)] = Tj - Tk; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tr, Tv, Tu, Tw, Tt; | ||
|  | 		    Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq); | ||
|  | 		    Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq); | ||
|  | 		    Tt = FMA(KP500000000, Tn, KP2_000000000 * To); | ||
|  | 		    Tu = Ts + Tt; | ||
|  | 		    Tw = Tt - Ts; | ||
|  | 		    R1[0] = -(Tr + Tu); | ||
|  | 		    R1[WS(rs, 3)] = Tw - Tv; | ||
|  | 		    R1[WS(rs, 4)] = Tr - Tu; | ||
|  | 		    R1[WS(rs, 1)] = Tv + Tw; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 10, "r2cbIII_10", { 26, 10, 6, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |