216 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			216 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "kernel/ifftw.h"
 | ||
|  | 
 | ||
|  | static int signof(INT x) | ||
|  | { | ||
|  |      if (x < 0) return -1; | ||
|  |      if (x == 0) return 0; | ||
|  |      /* if (x > 0) */ return 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* total order among iodim's */ | ||
|  | int X(dimcmp)(const iodim *a, const iodim *b) | ||
|  | { | ||
|  |      INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); | ||
|  |      INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os); | ||
|  |      INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo); | ||
|  | 
 | ||
|  |      /* in descending order of min{istride, ostride} */ | ||
|  |      if (sam != sbm) | ||
|  | 	  return signof(sbm - sam); | ||
|  | 
 | ||
|  |      /* in case of a tie, in descending order of istride */ | ||
|  |      if (sbi != sai) | ||
|  |           return signof(sbi - sai); | ||
|  | 
 | ||
|  |      /* in case of a tie, in descending order of ostride */ | ||
|  |      if (sbo != sao) | ||
|  |           return signof(sbo - sao); | ||
|  | 
 | ||
|  |      /* in case of a tie, in ascending order of n */ | ||
|  |      return signof(a->n - b->n); | ||
|  | } | ||
|  | 
 | ||
|  | static void canonicalize(tensor *x) | ||
|  | { | ||
|  |      if (x->rnk > 1) { | ||
|  | 	  qsort(x->dims, (unsigned)x->rnk, sizeof(iodim), | ||
|  | 		(int (*)(const void *, const void *))X(dimcmp)); | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static int compare_by_istride(const iodim *a, const iodim *b) | ||
|  | { | ||
|  |      INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); | ||
|  | 
 | ||
|  |      /* in descending order of istride */ | ||
|  |      return signof(sbi - sai); | ||
|  | } | ||
|  | 
 | ||
|  | static tensor *really_compress(const tensor *sz) | ||
|  | { | ||
|  |      int i, rnk; | ||
|  |      tensor *x; | ||
|  | 
 | ||
|  |      A(FINITE_RNK(sz->rnk)); | ||
|  |      for (i = rnk = 0; i < sz->rnk; ++i) { | ||
|  |           A(sz->dims[i].n > 0); | ||
|  |           if (sz->dims[i].n != 1) | ||
|  |                ++rnk; | ||
|  |      } | ||
|  | 
 | ||
|  |      x = X(mktensor)(rnk); | ||
|  |      for (i = rnk = 0; i < sz->rnk; ++i) { | ||
|  |           if (sz->dims[i].n != 1) | ||
|  |                x->dims[rnk++] = sz->dims[i]; | ||
|  |      } | ||
|  |      return x; | ||
|  | } | ||
|  | 
 | ||
|  | /* Like tensor_copy, but eliminate n == 1 dimensions, which
 | ||
|  |    never affect any transform or transform vector. | ||
|  |   | ||
|  |    Also, we sort the tensor into a canonical order of decreasing | ||
|  |    strides (see X(dimcmp) for an exact definition).  In general, | ||
|  |    processing a loop/array in order of decreasing stride will improve | ||
|  |    locality.  Both forward and backwards traversal of the tensor are | ||
|  |    considered e.g. by vrank-geq1, so sorting in increasing | ||
|  |    vs. decreasing order is not really important. */ | ||
|  | tensor *X(tensor_compress)(const tensor *sz) | ||
|  | { | ||
|  |      tensor *x = really_compress(sz); | ||
|  |      canonicalize(x); | ||
|  |      return x; | ||
|  | } | ||
|  | 
 | ||
|  | /* Return whether the strides of a and b are such that they form an
 | ||
|  |    effective contiguous 1d array.  Assumes that a.is >= b.is. */ | ||
|  | static int strides_contig(iodim *a, iodim *b) | ||
|  | { | ||
|  |      return (a->is == b->is * b->n && a->os == b->os * b->n); | ||
|  | } | ||
|  | 
 | ||
|  | /* Like tensor_compress, but also compress into one dimension any
 | ||
|  |    group of dimensions that form a contiguous block of indices with | ||
|  |    some stride.  (This can safely be done for transform vector sizes.) */ | ||
|  | tensor *X(tensor_compress_contiguous)(const tensor *sz) | ||
|  | { | ||
|  |      int i, rnk; | ||
|  |      tensor *sz2, *x; | ||
|  | 
 | ||
|  |      if (X(tensor_sz)(sz) == 0)  | ||
|  | 	  return X(mktensor)(RNK_MINFTY); | ||
|  | 
 | ||
|  |      sz2 = really_compress(sz); | ||
|  |      A(FINITE_RNK(sz2->rnk)); | ||
|  | 
 | ||
|  |      if (sz2->rnk <= 1) { /* nothing to compress. */  | ||
|  | 	  if (0) { | ||
|  | 	       /* this call is redundant, because "sz->rnk <= 1" implies
 | ||
|  | 		  that the tensor is already canonical, but I am writing | ||
|  | 		  it explicitly because "logically" we need to canonicalize | ||
|  | 		  the tensor before returning. */ | ||
|  | 	       canonicalize(sz2); | ||
|  | 	  } | ||
|  |           return sz2; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* sort in descending order of |istride|, so that compressible
 | ||
|  | 	dimensions appear contigously */ | ||
|  |      qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim), | ||
|  | 		(int (*)(const void *, const void *))compare_by_istride); | ||
|  | 
 | ||
|  |      /* compute what the rank will be after compression */ | ||
|  |      for (i = rnk = 1; i < sz2->rnk; ++i) | ||
|  |           if (!strides_contig(sz2->dims + i - 1, sz2->dims + i)) | ||
|  |                ++rnk; | ||
|  | 
 | ||
|  |      /* merge adjacent dimensions whenever possible */ | ||
|  |      x = X(mktensor)(rnk); | ||
|  |      x->dims[0] = sz2->dims[0]; | ||
|  |      for (i = rnk = 1; i < sz2->rnk; ++i) { | ||
|  |           if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) { | ||
|  |                x->dims[rnk - 1].n *= sz2->dims[i].n; | ||
|  |                x->dims[rnk - 1].is = sz2->dims[i].is; | ||
|  |                x->dims[rnk - 1].os = sz2->dims[i].os; | ||
|  |           } else { | ||
|  |                A(rnk < x->rnk); | ||
|  |                x->dims[rnk++] = sz2->dims[i]; | ||
|  |           } | ||
|  |      } | ||
|  | 
 | ||
|  |      X(tensor_destroy)(sz2); | ||
|  | 
 | ||
|  |      /* reduce to canonical form */ | ||
|  |      canonicalize(x); | ||
|  |      return x; | ||
|  | } | ||
|  | 
 | ||
|  | /* The inverse of X(tensor_append): splits the sz tensor into
 | ||
|  |    tensor a followed by tensor b, where a's rank is arnk. */ | ||
|  | void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b) | ||
|  | { | ||
|  |      A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk)); | ||
|  | 
 | ||
|  |      *a = X(tensor_copy_sub)(sz, 0, arnk); | ||
|  |      *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk); | ||
|  | } | ||
|  | 
 | ||
|  | /* TRUE if the two tensors are equal */ | ||
|  | int X(tensor_equal)(const tensor *a, const tensor *b) | ||
|  | { | ||
|  |      if (a->rnk != b->rnk) | ||
|  | 	  return 0; | ||
|  | 
 | ||
|  |      if (FINITE_RNK(a->rnk)) { | ||
|  | 	  int i; | ||
|  | 	  for (i = 0; i < a->rnk; ++i)  | ||
|  | 	       if (0 | ||
|  | 		   || a->dims[i].n != b->dims[i].n | ||
|  | 		   || a->dims[i].is != b->dims[i].is | ||
|  | 		   || a->dims[i].os != b->dims[i].os | ||
|  | 		    ) | ||
|  | 		    return 0; | ||
|  |      } | ||
|  | 
 | ||
|  |      return 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* TRUE if the sets of input and output locations described by
 | ||
|  |    (append sz vecsz) are the same */ | ||
|  | int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz) | ||
|  | { | ||
|  |      tensor *t = X(tensor_append)(sz, vecsz); | ||
|  |      tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS); | ||
|  |      tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS); | ||
|  |      tensor *tic = X(tensor_compress_contiguous)(ti); | ||
|  |      tensor *toc = X(tensor_compress_contiguous)(to); | ||
|  | 
 | ||
|  |      int retval = X(tensor_equal)(tic, toc); | ||
|  | 
 | ||
|  |      X(tensor_destroy)(t); | ||
|  |      X(tensor_destroy4)(ti, to, tic, toc); | ||
|  | 
 | ||
|  |      return retval; | ||
|  | } |