231 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			231 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:03 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n1bv_10 -include dft/simd/n1b.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 42 FP additions, 22 FP multiplications, | ||
|  |  * (or, 24 additions, 4 multiplications, 18 fused multiply/add), | ||
|  |  * 33 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n1b.h"
 | ||
|  | 
 | ||
|  | static void n1bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ii; | ||
|  | 	  xo = io; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { | ||
|  | 	       V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2; | ||
|  | 	       T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 	       T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 	       T3 = VSUB(T1, T2); | ||
|  | 	       Tr = VADD(T1, T2); | ||
|  | 	       { | ||
|  | 		    V T6, Ts, Tg, Tw, T9, Tt, Td, Tv; | ||
|  | 		    { | ||
|  | 			 V T4, T5, Te, Tf; | ||
|  | 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 			 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 T6 = VSUB(T4, T5); | ||
|  | 			 Ts = VADD(T4, T5); | ||
|  | 			 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | ||
|  | 			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Tg = VSUB(Te, Tf); | ||
|  | 			 Tw = VADD(Te, Tf); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V T7, T8, Tb, Tc; | ||
|  | 			 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | ||
|  | 			 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 T9 = VSUB(T7, T8); | ||
|  | 			 Tt = VADD(T7, T8); | ||
|  | 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 			 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Td = VSUB(Tb, Tc); | ||
|  | 			 Tv = VADD(Tb, Tc); | ||
|  | 		    } | ||
|  | 		    Tm = VSUB(T6, T9); | ||
|  | 		    Tn = VSUB(Td, Tg); | ||
|  | 		    TD = VSUB(Ts, Tt); | ||
|  | 		    TC = VSUB(Tv, Tw); | ||
|  | 		    Tu = VADD(Ts, Tt); | ||
|  | 		    Tx = VADD(Tv, Tw); | ||
|  | 		    Ty = VADD(Tu, Tx); | ||
|  | 		    Ta = VADD(T6, T9); | ||
|  | 		    Th = VADD(Td, Tg); | ||
|  | 		    Ti = VADD(Ta, Th); | ||
|  | 	       } | ||
|  | 	       ST(&(xo[WS(os, 5)]), VADD(T3, Ti), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       ST(&(xo[0]), VADD(Tr, Ty), ovs, &(xo[0])); | ||
|  | 	       { | ||
|  | 		    V To, Tq, Tl, Tp, Tj, Tk; | ||
|  | 		    To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm)); | ||
|  | 		    Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn)); | ||
|  | 		    Tj = VFNMS(LDK(KP250000000), Ti, T3); | ||
|  | 		    Tk = VSUB(Ta, Th); | ||
|  | 		    Tl = VFMA(LDK(KP559016994), Tk, Tj); | ||
|  | 		    Tp = VFNMS(LDK(KP559016994), Tk, Tj); | ||
|  | 		    ST(&(xo[WS(os, 1)]), VFMAI(To, Tl), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tp), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 9)]), VFNMSI(To, Tl), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 3)]), VFMAI(Tq, Tp), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TE, TG, TB, TF, Tz, TA; | ||
|  | 		    TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC)); | ||
|  | 		    TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD)); | ||
|  | 		    Tz = VFNMS(LDK(KP250000000), Ty, Tr); | ||
|  | 		    TA = VSUB(Tu, Tx); | ||
|  | 		    TB = VFNMS(LDK(KP559016994), TA, Tz); | ||
|  | 		    TF = VFMA(LDK(KP559016994), TA, Tz); | ||
|  | 		    ST(&(xo[WS(os, 2)]), VFNMSI(TE, TB), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 6)]), VFMAI(TG, TF), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 8)]), VFMAI(TE, TB), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 4)]), VFNMSI(TG, TF), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 10, XSIMD_STRING("n1bv_10"), { 24, 4, 18, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n1bv_10) (planner *p) { X(kdft_register) (p, n1bv_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n1bv_10 -include dft/simd/n1b.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 42 FP additions, 12 FP multiplications, | ||
|  |  * (or, 36 additions, 6 multiplications, 6 fused multiply/add), | ||
|  |  * 33 stack variables, 4 constants, and 20 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n1b.h"
 | ||
|  | 
 | ||
|  | static void n1bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ii; | ||
|  | 	  xo = io; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) { | ||
|  | 	       V Tl, Ty, T7, Te, Tw, Tt, Tz, TA, TB, Tg, Th, Tm, Tj, Tk; | ||
|  | 	       Tj = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 	       Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 	       Tl = VSUB(Tj, Tk); | ||
|  | 	       Ty = VADD(Tj, Tk); | ||
|  | 	       { | ||
|  | 		    V T3, Tr, Td, Tv, T6, Ts, Ta, Tu; | ||
|  | 		    { | ||
|  | 			 V T1, T2, Tb, Tc; | ||
|  | 			 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 			 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 T3 = VSUB(T1, T2); | ||
|  | 			 Tr = VADD(T1, T2); | ||
|  | 			 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | ||
|  | 			 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Td = VSUB(Tb, Tc); | ||
|  | 			 Tv = VADD(Tb, Tc); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 V T4, T5, T8, T9; | ||
|  | 			 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | ||
|  | 			 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 T6 = VSUB(T4, T5); | ||
|  | 			 Ts = VADD(T4, T5); | ||
|  | 			 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Ta = VSUB(T8, T9); | ||
|  | 			 Tu = VADD(T8, T9); | ||
|  | 		    } | ||
|  | 		    T7 = VSUB(T3, T6); | ||
|  | 		    Te = VSUB(Ta, Td); | ||
|  | 		    Tw = VSUB(Tu, Tv); | ||
|  | 		    Tt = VSUB(Tr, Ts); | ||
|  | 		    Tz = VADD(Tr, Ts); | ||
|  | 		    TA = VADD(Tu, Tv); | ||
|  | 		    TB = VADD(Tz, TA); | ||
|  | 		    Tg = VADD(T3, T6); | ||
|  | 		    Th = VADD(Ta, Td); | ||
|  | 		    Tm = VADD(Tg, Th); | ||
|  | 	       } | ||
|  | 	       ST(&(xo[WS(os, 5)]), VADD(Tl, Tm), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       ST(&(xo[0]), VADD(Ty, TB), ovs, &(xo[0])); | ||
|  | 	       { | ||
|  | 		    V Tf, Tq, To, Tp, Ti, Tn; | ||
|  | 		    Tf = VBYI(VFMA(LDK(KP951056516), T7, VMUL(LDK(KP587785252), Te))); | ||
|  | 		    Tq = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T7))); | ||
|  | 		    Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th)); | ||
|  | 		    Tn = VFNMS(LDK(KP250000000), Tm, Tl); | ||
|  | 		    To = VADD(Ti, Tn); | ||
|  | 		    Tp = VSUB(Tn, Ti); | ||
|  | 		    ST(&(xo[WS(os, 1)]), VADD(Tf, To), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 7)]), VADD(Tq, Tp), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 9)]), VSUB(To, Tf), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 3)]), VSUB(Tp, Tq), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tx, TG, TE, TF, TC, TD; | ||
|  | 		    Tx = VBYI(VFNMS(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt))); | ||
|  | 		    TG = VBYI(VFMA(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Tw))); | ||
|  | 		    TC = VFNMS(LDK(KP250000000), TB, Ty); | ||
|  | 		    TD = VMUL(LDK(KP559016994), VSUB(Tz, TA)); | ||
|  | 		    TE = VSUB(TC, TD); | ||
|  | 		    TF = VADD(TD, TC); | ||
|  | 		    ST(&(xo[WS(os, 2)]), VADD(Tx, TE), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 6)]), VADD(TG, TF), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 8)]), VSUB(TE, Tx), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 4)]), VSUB(TF, TG), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 10, XSIMD_STRING("n1bv_10"), { 36, 6, 6, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n1bv_10) (planner *p) { X(kdft_register) (p, n1bv_10, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |