187 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			187 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* adler32.c -- compute the Adler-32 checksum of a data stream
 | ||
|  |  * Copyright (C) 1995-2011, 2016 Mark Adler | ||
|  |  * For conditions of distribution and use, see copyright notice in zlib.h | ||
|  |  */ | ||
|  | 
 | ||
|  | /* @(#) $Id$ */ | ||
|  | 
 | ||
|  | #include "zutil.h"
 | ||
|  | 
 | ||
|  | local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); | ||
|  | 
 | ||
|  | #define BASE 65521U     /* largest prime smaller than 65536 */
 | ||
|  | #define NMAX 5552
 | ||
|  | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | ||
|  | 
 | ||
|  | #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
 | ||
|  | #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 | ||
|  | #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
 | ||
|  | #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
 | ||
|  | #define DO16(buf)   DO8(buf,0); DO8(buf,8);
 | ||
|  | 
 | ||
|  | /* use NO_DIVIDE if your processor does not do division in hardware --
 | ||
|  |    try it both ways to see which is faster */ | ||
|  | #ifdef NO_DIVIDE
 | ||
|  | /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
 | ||
|  |    (thank you to John Reiser for pointing this out) */ | ||
|  | #  define CHOP(a) \
 | ||
|  |     do { \ | ||
|  |         unsigned long tmp = a >> 16; \ | ||
|  |         a &= 0xffffUL; \ | ||
|  |         a += (tmp << 4) - tmp; \ | ||
|  |     } while (0) | ||
|  | #  define MOD28(a) \
 | ||
|  |     do { \ | ||
|  |         CHOP(a); \ | ||
|  |         if (a >= BASE) a -= BASE; \ | ||
|  |     } while (0) | ||
|  | #  define MOD(a) \
 | ||
|  |     do { \ | ||
|  |         CHOP(a); \ | ||
|  |         MOD28(a); \ | ||
|  |     } while (0) | ||
|  | #  define MOD63(a) \
 | ||
|  |     do { /* this assumes a is not negative */ \ | ||
|  |         z_off64_t tmp = a >> 32; \ | ||
|  |         a &= 0xffffffffL; \ | ||
|  |         a += (tmp << 8) - (tmp << 5) + tmp; \ | ||
|  |         tmp = a >> 16; \ | ||
|  |         a &= 0xffffL; \ | ||
|  |         a += (tmp << 4) - tmp; \ | ||
|  |         tmp = a >> 16; \ | ||
|  |         a &= 0xffffL; \ | ||
|  |         a += (tmp << 4) - tmp; \ | ||
|  |         if (a >= BASE) a -= BASE; \ | ||
|  |     } while (0) | ||
|  | #else
 | ||
|  | #  define MOD(a) a %= BASE
 | ||
|  | #  define MOD28(a) a %= BASE
 | ||
|  | #  define MOD63(a) a %= BASE
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT adler32_z(adler, buf, len) | ||
|  |     uLong adler; | ||
|  |     const Bytef *buf; | ||
|  |     z_size_t len; | ||
|  | { | ||
|  |     unsigned long sum2; | ||
|  |     unsigned n; | ||
|  | 
 | ||
|  |     /* split Adler-32 into component sums */ | ||
|  |     sum2 = (adler >> 16) & 0xffff; | ||
|  |     adler &= 0xffff; | ||
|  | 
 | ||
|  |     /* in case user likes doing a byte at a time, keep it fast */ | ||
|  |     if (len == 1) { | ||
|  |         adler += buf[0]; | ||
|  |         if (adler >= BASE) | ||
|  |             adler -= BASE; | ||
|  |         sum2 += adler; | ||
|  |         if (sum2 >= BASE) | ||
|  |             sum2 -= BASE; | ||
|  |         return adler | (sum2 << 16); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* initial Adler-32 value (deferred check for len == 1 speed) */ | ||
|  |     if (buf == Z_NULL) | ||
|  |         return 1L; | ||
|  | 
 | ||
|  |     /* in case short lengths are provided, keep it somewhat fast */ | ||
|  |     if (len < 16) { | ||
|  |         while (len--) { | ||
|  |             adler += *buf++; | ||
|  |             sum2 += adler; | ||
|  |         } | ||
|  |         if (adler >= BASE) | ||
|  |             adler -= BASE; | ||
|  |         MOD28(sum2);            /* only added so many BASE's */ | ||
|  |         return adler | (sum2 << 16); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* do length NMAX blocks -- requires just one modulo operation */ | ||
|  |     while (len >= NMAX) { | ||
|  |         len -= NMAX; | ||
|  |         n = NMAX / 16;          /* NMAX is divisible by 16 */ | ||
|  |         do { | ||
|  |             DO16(buf);          /* 16 sums unrolled */ | ||
|  |             buf += 16; | ||
|  |         } while (--n); | ||
|  |         MOD(adler); | ||
|  |         MOD(sum2); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* do remaining bytes (less than NMAX, still just one modulo) */ | ||
|  |     if (len) {                  /* avoid modulos if none remaining */ | ||
|  |         while (len >= 16) { | ||
|  |             len -= 16; | ||
|  |             DO16(buf); | ||
|  |             buf += 16; | ||
|  |         } | ||
|  |         while (len--) { | ||
|  |             adler += *buf++; | ||
|  |             sum2 += adler; | ||
|  |         } | ||
|  |         MOD(adler); | ||
|  |         MOD(sum2); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* return recombined sums */ | ||
|  |     return adler | (sum2 << 16); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT adler32(adler, buf, len) | ||
|  |     uLong adler; | ||
|  |     const Bytef *buf; | ||
|  |     uInt len; | ||
|  | { | ||
|  |     return adler32_z(adler, buf, len); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | local uLong adler32_combine_(adler1, adler2, len2) | ||
|  |     uLong adler1; | ||
|  |     uLong adler2; | ||
|  |     z_off64_t len2; | ||
|  | { | ||
|  |     unsigned long sum1; | ||
|  |     unsigned long sum2; | ||
|  |     unsigned rem; | ||
|  | 
 | ||
|  |     /* for negative len, return invalid adler32 as a clue for debugging */ | ||
|  |     if (len2 < 0) | ||
|  |         return 0xffffffffUL; | ||
|  | 
 | ||
|  |     /* the derivation of this formula is left as an exercise for the reader */ | ||
|  |     MOD63(len2);                /* assumes len2 >= 0 */ | ||
|  |     rem = (unsigned)len2; | ||
|  |     sum1 = adler1 & 0xffff; | ||
|  |     sum2 = rem * sum1; | ||
|  |     MOD(sum2); | ||
|  |     sum1 += (adler2 & 0xffff) + BASE - 1; | ||
|  |     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | ||
|  |     if (sum1 >= BASE) sum1 -= BASE; | ||
|  |     if (sum1 >= BASE) sum1 -= BASE; | ||
|  |     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); | ||
|  |     if (sum2 >= BASE) sum2 -= BASE; | ||
|  |     return sum1 | (sum2 << 16); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================= */ | ||
|  | uLong ZEXPORT adler32_combine(adler1, adler2, len2) | ||
|  |     uLong adler1; | ||
|  |     uLong adler2; | ||
|  |     z_off_t len2; | ||
|  | { | ||
|  |     return adler32_combine_(adler1, adler2, len2); | ||
|  | } | ||
|  | 
 | ||
|  | uLong ZEXPORT adler32_combine64(adler1, adler2, len2) | ||
|  |     uLong adler1; | ||
|  |     uLong adler2; | ||
|  |     z_off64_t len2; | ||
|  | { | ||
|  |     return adler32_combine_(adler1, adler2, len2); | ||
|  | } |