411 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			411 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some
							 | 
						||
| 
								 | 
							
								   pre/post-processing ala FFTPACK. */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "reodft/reodft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     solver super;
							 | 
						||
| 
								 | 
							
								} S;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     plan_rdft super;
							 | 
						||
| 
								 | 
							
								     plan *cld;
							 | 
						||
| 
								 | 
							
								     twid *td;
							 | 
						||
| 
								 | 
							
								     INT is, os;
							 | 
						||
| 
								 | 
							
								     INT n;
							 | 
						||
| 
								 | 
							
								     INT vl;
							 | 
						||
| 
								 | 
							
								     INT ivs, ovs;
							 | 
						||
| 
								 | 
							
								     rdft_kind kind;
							 | 
						||
| 
								 | 
							
								} P;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* A real-even-01 DFT operates logically on a size-4N array:
							 | 
						||
| 
								 | 
							
								                   I 0 -r(I*) -I 0 r(I*),
							 | 
						||
| 
								 | 
							
								   where r denotes reversal and * denotes deletion of the 0th element.
							 | 
						||
| 
								 | 
							
								   To compute the transform of this, we imagine performing a radix-4
							 | 
						||
| 
								 | 
							
								   (real-input) DIF step, which turns the size-4N DFT into 4 size-N
							 | 
						||
| 
								 | 
							
								   (contiguous) DFTs, two of which are zero and two of which are
							 | 
						||
| 
								 | 
							
								   conjugates.  The non-redundant size-N DFT has halfcomplex input, so
							 | 
						||
| 
								 | 
							
								   we can do it with a size-N hc2r transform.  (In order to share
							 | 
						||
| 
								 | 
							
								   plans with the re10 (inverse) transform, however, we use the DHT
							 | 
						||
| 
								 | 
							
								   trick to re-express the hc2r problem as r2hc.  This has little cost
							 | 
						||
| 
								 | 
							
								   since we are already pre- and post-processing the data in {i,n-i}
							 | 
						||
| 
								 | 
							
								   order.)  Finally, we have to write out the data in the correct
							 | 
						||
| 
								 | 
							
								   order...the two size-N redundant (conjugate) hc2r DFTs correspond
							 | 
						||
| 
								 | 
							
								   to the even and odd outputs in O (i.e. the usual interleaved output
							 | 
						||
| 
								 | 
							
								   of DIF transforms); since this data has even symmetry, we only
							 | 
						||
| 
								 | 
							
								   write the first half of it.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   The real-even-10 DFT is just the reverse of these steps, i.e. a
							 | 
						||
| 
								 | 
							
								   radix-4 DIT transform.  There, however, we just use the r2hc
							 | 
						||
| 
								 | 
							
								   transform naturally without resorting to the DHT trick.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   A real-odd-01 DFT is very similar, except that the input is
							 | 
						||
| 
								 | 
							
								   0 I (rI)* 0 -I -(rI)*.  This format, however, can be transformed
							 | 
						||
| 
								 | 
							
								   into precisely the real-even-01 format above by sending I -> rI
							 | 
						||
| 
								 | 
							
								   and shifting the array by N.  The former swap is just another
							 | 
						||
| 
								 | 
							
								   transformation on the input during preprocessing; the latter
							 | 
						||
| 
								 | 
							
								   multiplies the even/odd outputs by i/-i, which combines with
							 | 
						||
| 
								 | 
							
								   the factor of -i (to take the imaginary part) to simply flip
							 | 
						||
| 
								 | 
							
								   the sign of the odd outputs.  Vice-versa for real-odd-10.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   The FFTPACK source code was very helpful in working this out.
							 | 
						||
| 
								 | 
							
								   (They do unnecessary passes over the array, though.)  The same
							 | 
						||
| 
								 | 
							
								   algorithm is also described in:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      John Makhoul, "A fast cosine transform in one and two dimensions,"
							 | 
						||
| 
								 | 
							
								      IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980).
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   Note that Numerical Recipes suggests a different algorithm that
							 | 
						||
| 
								 | 
							
								   requires more operations and uses trig. functions for both the pre-
							 | 
						||
| 
								 | 
							
								   and post-processing passes.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply_re01(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, n = ego->n;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W = ego->td->W;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  buf[0] = I[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b, apb, amb, wa, wb;
							 | 
						||
| 
								 | 
							
									       a = I[is * i];
							 | 
						||
| 
								 | 
							
									       b = I[is * (n - i)];
							 | 
						||
| 
								 | 
							
									       apb = a + b;
							 | 
						||
| 
								 | 
							
									       amb = a - b;
							 | 
						||
| 
								 | 
							
									       wa = W[2*i];
							 | 
						||
| 
								 | 
							
									       wb = W[2*i + 1];
							 | 
						||
| 
								 | 
							
									       buf[i] = wa * amb + wb * apb; 
							 | 
						||
| 
								 | 
							
									       buf[n - i] = wa * apb - wb * amb; 
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       buf[i] = K(2.0) * I[is * i] * W[2*i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cld;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  O[0] = buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b;
							 | 
						||
| 
								 | 
							
									       INT k;
							 | 
						||
| 
								 | 
							
									       a = buf[i];
							 | 
						||
| 
								 | 
							
									       b = buf[n - i];
							 | 
						||
| 
								 | 
							
									       k = i + i;
							 | 
						||
| 
								 | 
							
									       O[os * (k - 1)] = a - b;
							 | 
						||
| 
								 | 
							
									       O[os * k] = a + b;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       O[os * (n - 1)] = buf[i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* ro01 is same as re01, but with i <-> n - 1 - i in the input and
							 | 
						||
| 
								 | 
							
								   the sign of the odd output elements flipped. */
							 | 
						||
| 
								 | 
							
								static void apply_ro01(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, n = ego->n;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W = ego->td->W;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  buf[0] = I[is * (n - 1)];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b, apb, amb, wa, wb;
							 | 
						||
| 
								 | 
							
									       a = I[is * (n - 1 - i)];
							 | 
						||
| 
								 | 
							
									       b = I[is * (i - 1)];
							 | 
						||
| 
								 | 
							
									       apb = a + b;
							 | 
						||
| 
								 | 
							
									       amb = a - b;
							 | 
						||
| 
								 | 
							
									       wa = W[2*i];
							 | 
						||
| 
								 | 
							
									       wb = W[2*i+1];
							 | 
						||
| 
								 | 
							
									       buf[i] = wa * amb + wb * apb; 
							 | 
						||
| 
								 | 
							
									       buf[n - i] = wa * apb - wb * amb; 
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cld;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  O[0] = buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b;
							 | 
						||
| 
								 | 
							
									       INT k;
							 | 
						||
| 
								 | 
							
									       a = buf[i];
							 | 
						||
| 
								 | 
							
									       b = buf[n - i];
							 | 
						||
| 
								 | 
							
									       k = i + i;
							 | 
						||
| 
								 | 
							
									       O[os * (k - 1)] = b - a;
							 | 
						||
| 
								 | 
							
									       O[os * k] = a + b;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       O[os * (n - 1)] = -buf[i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply_re10(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, n = ego->n;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W = ego->td->W;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  buf[0] = I[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E u, v;
							 | 
						||
| 
								 | 
							
									       INT k = i + i;
							 | 
						||
| 
								 | 
							
									       u = I[is * (k - 1)];
							 | 
						||
| 
								 | 
							
									       v = I[is * k];
							 | 
						||
| 
								 | 
							
									       buf[n - i] = u;
							 | 
						||
| 
								 | 
							
									       buf[i] = v;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       buf[i] = I[is * (n - 1)];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cld;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  O[0] = K(2.0) * buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b, wa, wb;
							 | 
						||
| 
								 | 
							
									       a = K(2.0) * buf[i];
							 | 
						||
| 
								 | 
							
									       b = K(2.0) * buf[n - i];
							 | 
						||
| 
								 | 
							
									       wa = W[2*i];
							 | 
						||
| 
								 | 
							
									       wb = W[2*i + 1];
							 | 
						||
| 
								 | 
							
									       O[os * i] = wa * a + wb * b;
							 | 
						||
| 
								 | 
							
									       O[os * (n - i)] = wb * a - wa * b;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       O[os * i] = K(2.0) * buf[i] * W[2*i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* ro10 is same as re10, but with i <-> n - 1 - i in the output and
							 | 
						||
| 
								 | 
							
								   the sign of the odd input elements flipped. */
							 | 
						||
| 
								 | 
							
								static void apply_ro10(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os = ego->os;
							 | 
						||
| 
								 | 
							
								     INT i, n = ego->n;
							 | 
						||
| 
								 | 
							
								     INT iv, vl = ego->vl;
							 | 
						||
| 
								 | 
							
								     INT ivs = ego->ivs, ovs = ego->ovs;
							 | 
						||
| 
								 | 
							
								     R *W = ego->td->W;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
							 | 
						||
| 
								 | 
							
									  buf[0] = I[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E u, v;
							 | 
						||
| 
								 | 
							
									       INT k = i + i;
							 | 
						||
| 
								 | 
							
									       u = -I[is * (k - 1)];
							 | 
						||
| 
								 | 
							
									       v = I[is * k];
							 | 
						||
| 
								 | 
							
									       buf[n - i] = u;
							 | 
						||
| 
								 | 
							
									       buf[i] = v;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       buf[i] = -I[is * (n - 1)];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  {
							 | 
						||
| 
								 | 
							
									       plan_rdft *cld = (plan_rdft *) ego->cld;
							 | 
						||
| 
								 | 
							
									       cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  
							 | 
						||
| 
								 | 
							
									  O[os * (n - 1)] = K(2.0) * buf[0];
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n - i; ++i) {
							 | 
						||
| 
								 | 
							
									       E a, b, wa, wb;
							 | 
						||
| 
								 | 
							
									       a = K(2.0) * buf[i];
							 | 
						||
| 
								 | 
							
									       b = K(2.0) * buf[n - i];
							 | 
						||
| 
								 | 
							
									       wa = W[2*i];
							 | 
						||
| 
								 | 
							
									       wb = W[2*i + 1];
							 | 
						||
| 
								 | 
							
									       O[os * (n - 1 - i)] = wa * a + wb * b;
							 | 
						||
| 
								 | 
							
									       O[os * (i - 1)] = wb * a - wa * b;
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  if (i == n - i) {
							 | 
						||
| 
								 | 
							
									       O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void awake(plan *ego_, enum wakefulness wakefulness)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     static const tw_instr reodft010e_tw[] = {
							 | 
						||
| 
								 | 
							
								          { TW_COS, 0, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_SIN, 0, 1 },
							 | 
						||
| 
								 | 
							
								          { TW_NEXT, 1, 0 }
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld, wakefulness);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, 
							 | 
						||
| 
								 | 
							
										      4*ego->n, 1, ego->n/2+1);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void destroy(plan *ego_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void print(const plan *ego_, printer *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     p->print(p, "(%se-r2hc-%D%v%(%p%))",
							 | 
						||
| 
								 | 
							
									      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable0(const solver *ego_, const problem *p_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								     UNUSED(ego_);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return (1
							 | 
						||
| 
								 | 
							
									     && p->sz->rnk == 1
							 | 
						||
| 
								 | 
							
									     && p->vecsz->rnk <= 1
							 | 
						||
| 
								 | 
							
									     && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10
							 | 
						||
| 
								 | 
							
										 || p->kind[0] == RODFT01 || p->kind[0] == RODFT10)
							 | 
						||
| 
								 | 
							
									  );
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable(const solver *ego, const problem *p, const planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     return (!NO_SLOWP(plnr) && applicable0(ego, p));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *pln;
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p;
							 | 
						||
| 
								 | 
							
								     plan *cld;
							 | 
						||
| 
								 | 
							
								     R *buf;
							 | 
						||
| 
								 | 
							
								     INT n;
							 | 
						||
| 
								 | 
							
								     opcnt ops;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     static const plan_adt padt = {
							 | 
						||
| 
								 | 
							
									  X(rdft_solve), awake, print, destroy
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!applicable(ego_, p_, plnr))
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     n = p->sz->dims[0].n;
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
							 | 
						||
| 
								 | 
							
								                                                   X(mktensor_0d)(),
							 | 
						||
| 
								 | 
							
								                                                   buf, buf, R2HC));
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								     if (!cld)
							 | 
						||
| 
								 | 
							
								          return (plan *)0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     switch (p->kind[0]) {
							 | 
						||
| 
								 | 
							
									 case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break;
							 | 
						||
| 
								 | 
							
									 case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break;
							 | 
						||
| 
								 | 
							
									 case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break;
							 | 
						||
| 
								 | 
							
									 case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break;
							 | 
						||
| 
								 | 
							
									 default: A(0); return (plan*)0;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln->n = n;
							 | 
						||
| 
								 | 
							
								     pln->is = p->sz->dims[0].is;
							 | 
						||
| 
								 | 
							
								     pln->os = p->sz->dims[0].os;
							 | 
						||
| 
								 | 
							
								     pln->cld = cld;
							 | 
						||
| 
								 | 
							
								     pln->td = 0;
							 | 
						||
| 
								 | 
							
								     pln->kind = p->kind[0];
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&ops);
							 | 
						||
| 
								 | 
							
								     ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5;
							 | 
						||
| 
								 | 
							
								     if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) {
							 | 
						||
| 
								 | 
							
									  ops.add = (n-1)/2 * 6;
							 | 
						||
| 
								 | 
							
									  ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else { /* 10 transforms */
							 | 
						||
| 
								 | 
							
									  ops.add = (n-1)/2 * 2;
							 | 
						||
| 
								 | 
							
									  ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     X(ops_zero)(&pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return &(pln->super.super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* constructor */
							 | 
						||
| 
								 | 
							
								static solver *mksolver(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
							 | 
						||
| 
								 | 
							
								     S *slv = MKSOLVER(S, &sadt);
							 | 
						||
| 
								 | 
							
								     return &(slv->super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(reodft010e_r2hc_register)(planner *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     REGISTER_SOLVER(p, mksolver());
							 | 
						||
| 
								 | 
							
								}
							 |