221 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			221 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Solve an R2HC/HC2R problem via post/pre processing of a DHT.  This
 | ||
|  |    is mainly useful because we can use Rader to compute DHTs of prime | ||
|  |    sizes.  It also allows us to express hc2r problems in terms of r2hc | ||
|  |    (via dht-r2hc), and to do hc2r problems without destroying the input. */ | ||
|  | 
 | ||
|  | #include "rdft/rdft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_rdft super; | ||
|  |      plan *cld; | ||
|  |      INT is, os; | ||
|  |      INT n; | ||
|  | } P; | ||
|  | 
 | ||
|  | static void apply_r2hc(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT os; | ||
|  |      INT i, n; | ||
|  | 
 | ||
|  |      { | ||
|  | 	  plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	  cld->apply((plan *) cld, I, O); | ||
|  |      } | ||
|  | 
 | ||
|  |      n = ego->n; | ||
|  |      os = ego->os; | ||
|  |      for (i = 1; i < n - i; ++i) { | ||
|  | 	  E a, b; | ||
|  | 	  a = K(0.5) * O[os * i]; | ||
|  | 	  b = K(0.5) * O[os * (n - i)]; | ||
|  | 	  O[os * i] = a + b; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	  O[os * (n - i)] = b - a; | ||
|  | #else
 | ||
|  | 	  O[os * (n - i)] = a - b; | ||
|  | #endif
 | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | /* hc2r, destroying input as usual */ | ||
|  | static void apply_hc2r(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is; | ||
|  |      INT i, n = ego->n; | ||
|  | 
 | ||
|  |      for (i = 1; i < n - i; ++i) { | ||
|  | 	  E a, b; | ||
|  | 	  a = I[is * i]; | ||
|  | 	  b = I[is * (n - i)]; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	  I[is * i] = a - b; | ||
|  | 	  I[is * (n - i)] = a + b; | ||
|  | #else
 | ||
|  | 	  I[is * i] = a + b; | ||
|  | 	  I[is * (n - i)] = a - b; | ||
|  | #endif
 | ||
|  |      } | ||
|  | 
 | ||
|  |      { | ||
|  | 	  plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	  cld->apply((plan *) cld, I, O); | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | /* hc2r, without destroying input */ | ||
|  | static void apply_hc2r_save(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      INT is = ego->is, os = ego->os; | ||
|  |      INT i, n = ego->n; | ||
|  | 
 | ||
|  |      O[0] = I[0]; | ||
|  |      for (i = 1; i < n - i; ++i) { | ||
|  | 	  E a, b; | ||
|  | 	  a = I[is * i]; | ||
|  | 	  b = I[is * (n - i)]; | ||
|  | #if FFT_SIGN == -1
 | ||
|  | 	  O[os * i] = a - b; | ||
|  | 	  O[os * (n - i)] = a + b; | ||
|  | #else
 | ||
|  | 	  O[os * i] = a + b; | ||
|  | 	  O[os * (n - i)] = a - b; | ||
|  | #endif
 | ||
|  |      } | ||
|  |      if (i == n - i) | ||
|  | 	  O[os * i] = I[is * i]; | ||
|  | 
 | ||
|  |      { | ||
|  | 	  plan_rdft *cld = (plan_rdft *) ego->cld; | ||
|  | 	  cld->apply((plan *) cld, O, O); | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_awake)(ego->cld, wakefulness); | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(%s-dht-%D%(%p%))",  | ||
|  | 	      ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", | ||
|  | 	      ego->n, ego->cld); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable0(const solver *ego_, const problem *p_) | ||
|  | { | ||
|  |      const problem_rdft *p = (const problem_rdft *) p_; | ||
|  |      UNUSED(ego_); | ||
|  | 
 | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 	     && p->vecsz->rnk == 0 | ||
|  | 	     && (p->kind[0] == R2HC || p->kind[0] == HC2R) | ||
|  | 
 | ||
|  | 	     /* hack: size-2 DHT etc. are defined as being equivalent
 | ||
|  | 		to size-2 R2HC in problem.c, so we need this to prevent | ||
|  | 		infinite loops for size 2 in EXHAUSTIVE mode: */ | ||
|  | 	     && p->sz->dims[0].n > 2 | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const solver *ego, const problem *p_,  | ||
|  | 		      const planner *plnr) | ||
|  | { | ||
|  |      return (!NO_SLOWP(plnr) && applicable0(ego, p_)); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      P *pln; | ||
|  |      const problem_rdft *p; | ||
|  |      problem *cldp; | ||
|  |      plan *cld; | ||
|  | 
 | ||
|  |      static const plan_adt padt = { | ||
|  | 	  X(rdft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      if (!applicable(ego_, p_, plnr)) | ||
|  |           return (plan *)0; | ||
|  | 
 | ||
|  |      p = (const problem_rdft *) p_; | ||
|  | 
 | ||
|  |      if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) | ||
|  | 	  cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); | ||
|  |      else { | ||
|  | 	  tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); | ||
|  | 	  cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); | ||
|  | 	  X(tensor_destroy)(sz); | ||
|  |      } | ||
|  |      cld = X(mkplan_d)(plnr, cldp); | ||
|  |      if (!cld) return (plan *)0; | ||
|  | 
 | ||
|  |      pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ?  | ||
|  | 		       apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? | ||
|  | 				     apply_hc2r_save : apply_hc2r)); | ||
|  |      pln->n = p->sz->dims[0].n; | ||
|  |      pln->is = p->sz->dims[0].is; | ||
|  |      pln->os = p->sz->dims[0].os; | ||
|  |      pln->cld = cld; | ||
|  |       | ||
|  |      pln->super.super.ops = cld->ops; | ||
|  |      pln->super.super.ops.other += 4 * ((pln->n - 1)/2); | ||
|  |      pln->super.super.ops.add += 2 * ((pln->n - 1)/2); | ||
|  |      if (p->kind[0] == R2HC) | ||
|  | 	  pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); | ||
|  |      if (pln->super.apply == apply_hc2r_save) | ||
|  | 	  pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | } | ||
|  | 
 | ||
|  | /* constructor */ | ||
|  | static solver *mksolver(void) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void X(rdft_dht_register)(planner *p) | ||
|  | { | ||
|  |      REGISTER_SOLVER(p, mksolver()); | ||
|  | } |