4106 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			4106 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:14 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 1038 FP additions, 644 FP multiplications, | ||
|  |  * (or, 520 additions, 126 multiplications, 518 fused multiply/add), | ||
|  |  * 190 stack variables, 15 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hf.h"
 | ||
|  | 
 | ||
|  | static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP881921264, +0.881921264348355029712756863660388349508442621); | ||
|  |      DK(KP956940335, +0.956940335732208864935797886980269969482849206); | ||
|  |      DK(KP831469612, +0.831469612302545237078788377617905756738560812); | ||
|  |      DK(KP773010453, +0.773010453362736960810906609758469800971041293); | ||
|  |      DK(KP995184726, +0.995184726672196886244836953109479921575474869); | ||
|  |      DK(KP980785280, +0.980785280403230449126182236134239036973933731); | ||
|  |      DK(KP668178637, +0.668178637919298919997757686523080761552472251); | ||
|  |      DK(KP303346683, +0.303346683607342391675883946941299872384187453); | ||
|  |      DK(KP534511135, +0.534511135950791641089685961295362908582039528); | ||
|  |      DK(KP820678790, +0.820678790828660330972281985331011598767386482); | ||
|  |      DK(KP098491403, +0.098491403357164253077197521291327432293052451); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP198912367, +0.198912367379658006911597622644676228597850501); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | ||
|  | 	       E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Thr, T7Q, TcI, T7X; | ||
|  | 	       E TcJ, T29, Tf8, Tf5, Thw, T87, TcN, T8u, TcQ, T5K, TfS, Tgc, ThX, Taq, Tdm; | ||
|  | 	       E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Ths, T7B; | ||
|  | 	       E TcF, T7I, TcG, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, Tfr, TfK, ThM; | ||
|  | 	       E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thx, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm; | ||
|  | 	       E ThC, T8V, TcY, T96, TcV, T4o, TfL, Tfu, ThN, T9w, Tdf, Tad, Td4, T6b, Tg9; | ||
|  | 	       E TfV, ThY, TaF, Tdy, Tbm, Tdn, T4Q, ThJ, TfA, TfN, T9M, Tdh, Taf, Td8, T5h; | ||
|  | 	       E ThI, TfF, TfO, Ta1, Tdi, Tag, Tdb, T6D, ThU, Tg1, Tgf, TaV, TdA, Tbo, Tdr; | ||
|  | 	       E T74, ThT, Tg6, Tge, Tba, TdB, Tbp, Tdu; | ||
|  | 	       { | ||
|  | 		    E T1, TiT, T7, TiS, Te, T7a, Tk, T7c; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    TiT = ci[0]; | ||
|  | 		    { | ||
|  | 			 E T3, T6, T4, TiR, T2, T5; | ||
|  | 			 T3 = cr[WS(rs, 32)]; | ||
|  | 			 T6 = ci[WS(rs, 32)]; | ||
|  | 			 T2 = W[62]; | ||
|  | 			 T4 = T2 * T3; | ||
|  | 			 TiR = T2 * T6; | ||
|  | 			 T5 = W[63]; | ||
|  | 			 T7 = FMA(T5, T6, T4); | ||
|  | 			 TiS = FNMS(T5, T3, TiR); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta, Td, Tb, T79, T9, Tc; | ||
|  | 			 Ta = cr[WS(rs, 16)]; | ||
|  | 			 Td = ci[WS(rs, 16)]; | ||
|  | 			 T9 = W[30]; | ||
|  | 			 Tb = T9 * Ta; | ||
|  | 			 T79 = T9 * Td; | ||
|  | 			 Tc = W[31]; | ||
|  | 			 Te = FMA(Tc, Td, Tb); | ||
|  | 			 T7a = FNMS(Tc, Ta, T79); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tg, Tj, Th, T7b, Tf, Ti; | ||
|  | 			 Tg = cr[WS(rs, 48)]; | ||
|  | 			 Tj = ci[WS(rs, 48)]; | ||
|  | 			 Tf = W[94]; | ||
|  | 			 Th = Tf * Tg; | ||
|  | 			 T7b = Tf * Tj; | ||
|  | 			 Ti = W[95]; | ||
|  | 			 Tk = FMA(Ti, Tj, Th); | ||
|  | 			 T7c = FNMS(Ti, Tg, T7b); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8, Tl, TjP, TjQ; | ||
|  | 			 T8 = T1 + T7; | ||
|  | 			 Tl = Te + Tk; | ||
|  | 			 Tm = T8 + Tl; | ||
|  | 			 TeM = T8 - Tl; | ||
|  | 			 TjP = Te - Tk; | ||
|  | 			 TjQ = TiT - TiS; | ||
|  | 			 TjR = TjP + TjQ; | ||
|  | 			 Tkl = TjQ - TjP; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T78, T7d, TiQ, TiU; | ||
|  | 			 T78 = T1 - T7; | ||
|  | 			 T7d = T7a - T7c; | ||
|  | 			 T7e = T78 - T7d; | ||
|  | 			 TcA = T78 + T7d; | ||
|  | 			 TiQ = T7a + T7c; | ||
|  | 			 TiU = TiS + TiT; | ||
|  | 			 TiV = TiQ + TiU; | ||
|  | 			 Tjm = TiU - TiQ; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1l, T7S, T1E, T7O, T1r, T7U, T1y, T7M; | ||
|  | 		    { | ||
|  | 			 E T1h, T1k, T1i, T7R, T1g, T1j; | ||
|  | 			 T1h = cr[WS(rs, 60)]; | ||
|  | 			 T1k = ci[WS(rs, 60)]; | ||
|  | 			 T1g = W[118]; | ||
|  | 			 T1i = T1g * T1h; | ||
|  | 			 T7R = T1g * T1k; | ||
|  | 			 T1j = W[119]; | ||
|  | 			 T1l = FMA(T1j, T1k, T1i); | ||
|  | 			 T7S = FNMS(T1j, T1h, T7R); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1A, T1D, T1B, T7N, T1z, T1C; | ||
|  | 			 T1A = cr[WS(rs, 44)]; | ||
|  | 			 T1D = ci[WS(rs, 44)]; | ||
|  | 			 T1z = W[86]; | ||
|  | 			 T1B = T1z * T1A; | ||
|  | 			 T7N = T1z * T1D; | ||
|  | 			 T1C = W[87]; | ||
|  | 			 T1E = FMA(T1C, T1D, T1B); | ||
|  | 			 T7O = FNMS(T1C, T1A, T7N); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1n, T1q, T1o, T7T, T1m, T1p; | ||
|  | 			 T1n = cr[WS(rs, 28)]; | ||
|  | 			 T1q = ci[WS(rs, 28)]; | ||
|  | 			 T1m = W[54]; | ||
|  | 			 T1o = T1m * T1n; | ||
|  | 			 T7T = T1m * T1q; | ||
|  | 			 T1p = W[55]; | ||
|  | 			 T1r = FMA(T1p, T1q, T1o); | ||
|  | 			 T7U = FNMS(T1p, T1n, T7T); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1u, T1x, T1v, T7L, T1t, T1w; | ||
|  | 			 T1u = cr[WS(rs, 12)]; | ||
|  | 			 T1x = ci[WS(rs, 12)]; | ||
|  | 			 T1t = W[22]; | ||
|  | 			 T1v = T1t * T1u; | ||
|  | 			 T7L = T1t * T1x; | ||
|  | 			 T1w = W[23]; | ||
|  | 			 T1y = FMA(T1w, T1x, T1v); | ||
|  | 			 T7M = FNMS(T1w, T1u, T7L); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1s, T1F, TeX, TeY; | ||
|  | 			 T1s = T1l + T1r; | ||
|  | 			 T1F = T1y + T1E; | ||
|  | 			 T1G = T1s + T1F; | ||
|  | 			 TeW = T1s - T1F; | ||
|  | 			 TeX = T7S + T7U; | ||
|  | 			 TeY = T7M + T7O; | ||
|  | 			 TeZ = TeX - TeY; | ||
|  | 			 Thr = TeX + TeY; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7K, T7P, T7V, T7W; | ||
|  | 			 T7K = T1l - T1r; | ||
|  | 			 T7P = T7M - T7O; | ||
|  | 			 T7Q = T7K - T7P; | ||
|  | 			 TcI = T7K + T7P; | ||
|  | 			 T7V = T7S - T7U; | ||
|  | 			 T7W = T1y - T1E; | ||
|  | 			 T7X = T7V + T7W; | ||
|  | 			 TcJ = T7V - T7W; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1O, T8p, T27, T85, T1U, T8r, T21, T83; | ||
|  | 		    { | ||
|  | 			 E T1K, T1N, T1L, T8o, T1J, T1M; | ||
|  | 			 T1K = cr[WS(rs, 2)]; | ||
|  | 			 T1N = ci[WS(rs, 2)]; | ||
|  | 			 T1J = W[2]; | ||
|  | 			 T1L = T1J * T1K; | ||
|  | 			 T8o = T1J * T1N; | ||
|  | 			 T1M = W[3]; | ||
|  | 			 T1O = FMA(T1M, T1N, T1L); | ||
|  | 			 T8p = FNMS(T1M, T1K, T8o); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T23, T26, T24, T84, T22, T25; | ||
|  | 			 T23 = cr[WS(rs, 50)]; | ||
|  | 			 T26 = ci[WS(rs, 50)]; | ||
|  | 			 T22 = W[98]; | ||
|  | 			 T24 = T22 * T23; | ||
|  | 			 T84 = T22 * T26; | ||
|  | 			 T25 = W[99]; | ||
|  | 			 T27 = FMA(T25, T26, T24); | ||
|  | 			 T85 = FNMS(T25, T23, T84); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1Q, T1T, T1R, T8q, T1P, T1S; | ||
|  | 			 T1Q = cr[WS(rs, 34)]; | ||
|  | 			 T1T = ci[WS(rs, 34)]; | ||
|  | 			 T1P = W[66]; | ||
|  | 			 T1R = T1P * T1Q; | ||
|  | 			 T8q = T1P * T1T; | ||
|  | 			 T1S = W[67]; | ||
|  | 			 T1U = FMA(T1S, T1T, T1R); | ||
|  | 			 T8r = FNMS(T1S, T1Q, T8q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1X, T20, T1Y, T82, T1W, T1Z; | ||
|  | 			 T1X = cr[WS(rs, 18)]; | ||
|  | 			 T20 = ci[WS(rs, 18)]; | ||
|  | 			 T1W = W[34]; | ||
|  | 			 T1Y = T1W * T1X; | ||
|  | 			 T82 = T1W * T20; | ||
|  | 			 T1Z = W[35]; | ||
|  | 			 T21 = FMA(T1Z, T20, T1Y); | ||
|  | 			 T83 = FNMS(T1Z, T1X, T82); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1V, T28, Tf3, Tf4; | ||
|  | 			 T1V = T1O + T1U; | ||
|  | 			 T28 = T21 + T27; | ||
|  | 			 T29 = T1V + T28; | ||
|  | 			 Tf8 = T1V - T28; | ||
|  | 			 Tf3 = T8p + T8r; | ||
|  | 			 Tf4 = T83 + T85; | ||
|  | 			 Tf5 = Tf3 - Tf4; | ||
|  | 			 Thw = Tf3 + Tf4; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T81, T86, T8s, T8t; | ||
|  | 			 T81 = T1O - T1U; | ||
|  | 			 T86 = T83 - T85; | ||
|  | 			 T87 = T81 - T86; | ||
|  | 			 TcN = T81 + T86; | ||
|  | 			 T8s = T8p - T8r; | ||
|  | 			 T8t = T21 - T27; | ||
|  | 			 T8u = T8s + T8t; | ||
|  | 			 TcQ = T8s - T8t; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5p, Tbf, T5I, Tao, T5v, Tbh, T5C, Tam; | ||
|  | 		    { | ||
|  | 			 E T5l, T5o, T5m, Tbe, T5k, T5n; | ||
|  | 			 T5l = cr[WS(rs, 63)]; | ||
|  | 			 T5o = ci[WS(rs, 63)]; | ||
|  | 			 T5k = W[124]; | ||
|  | 			 T5m = T5k * T5l; | ||
|  | 			 Tbe = T5k * T5o; | ||
|  | 			 T5n = W[125]; | ||
|  | 			 T5p = FMA(T5n, T5o, T5m); | ||
|  | 			 Tbf = FNMS(T5n, T5l, Tbe); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5E, T5H, T5F, Tan, T5D, T5G; | ||
|  | 			 T5E = cr[WS(rs, 47)]; | ||
|  | 			 T5H = ci[WS(rs, 47)]; | ||
|  | 			 T5D = W[92]; | ||
|  | 			 T5F = T5D * T5E; | ||
|  | 			 Tan = T5D * T5H; | ||
|  | 			 T5G = W[93]; | ||
|  | 			 T5I = FMA(T5G, T5H, T5F); | ||
|  | 			 Tao = FNMS(T5G, T5E, Tan); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5r, T5u, T5s, Tbg, T5q, T5t; | ||
|  | 			 T5r = cr[WS(rs, 31)]; | ||
|  | 			 T5u = ci[WS(rs, 31)]; | ||
|  | 			 T5q = W[60]; | ||
|  | 			 T5s = T5q * T5r; | ||
|  | 			 Tbg = T5q * T5u; | ||
|  | 			 T5t = W[61]; | ||
|  | 			 T5v = FMA(T5t, T5u, T5s); | ||
|  | 			 Tbh = FNMS(T5t, T5r, Tbg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5y, T5B, T5z, Tal, T5x, T5A; | ||
|  | 			 T5y = cr[WS(rs, 15)]; | ||
|  | 			 T5B = ci[WS(rs, 15)]; | ||
|  | 			 T5x = W[28]; | ||
|  | 			 T5z = T5x * T5y; | ||
|  | 			 Tal = T5x * T5B; | ||
|  | 			 T5A = W[29]; | ||
|  | 			 T5C = FMA(T5A, T5B, T5z); | ||
|  | 			 Tam = FNMS(T5A, T5y, Tal); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5w, T5J, Tga, Tgb; | ||
|  | 			 T5w = T5p + T5v; | ||
|  | 			 T5J = T5C + T5I; | ||
|  | 			 T5K = T5w + T5J; | ||
|  | 			 TfS = T5w - T5J; | ||
|  | 			 Tga = Tbf + Tbh; | ||
|  | 			 Tgb = Tam + Tao; | ||
|  | 			 Tgc = Tga - Tgb; | ||
|  | 			 ThX = Tga + Tgb; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tak, Tap, Tbd, Tbi; | ||
|  | 			 Tak = T5p - T5v; | ||
|  | 			 Tap = Tam - Tao; | ||
|  | 			 Taq = Tak - Tap; | ||
|  | 			 Tdm = Tak + Tap; | ||
|  | 			 Tbd = T5I - T5C; | ||
|  | 			 Tbi = Tbf - Tbh; | ||
|  | 			 Tbj = Tbd - Tbi; | ||
|  | 			 Tdx = Tbi + Tbd; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ts, T7h, TL, T7q, Ty, T7j, TF, T7o; | ||
|  | 		    { | ||
|  | 			 E To, Tr, Tp, T7g, Tn, Tq; | ||
|  | 			 To = cr[WS(rs, 8)]; | ||
|  | 			 Tr = ci[WS(rs, 8)]; | ||
|  | 			 Tn = W[14]; | ||
|  | 			 Tp = Tn * To; | ||
|  | 			 T7g = Tn * Tr; | ||
|  | 			 Tq = W[15]; | ||
|  | 			 Ts = FMA(Tq, Tr, Tp); | ||
|  | 			 T7h = FNMS(Tq, To, T7g); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TH, TK, TI, T7p, TG, TJ; | ||
|  | 			 TH = cr[WS(rs, 24)]; | ||
|  | 			 TK = ci[WS(rs, 24)]; | ||
|  | 			 TG = W[46]; | ||
|  | 			 TI = TG * TH; | ||
|  | 			 T7p = TG * TK; | ||
|  | 			 TJ = W[47]; | ||
|  | 			 TL = FMA(TJ, TK, TI); | ||
|  | 			 T7q = FNMS(TJ, TH, T7p); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tu, Tx, Tv, T7i, Tt, Tw; | ||
|  | 			 Tu = cr[WS(rs, 40)]; | ||
|  | 			 Tx = ci[WS(rs, 40)]; | ||
|  | 			 Tt = W[78]; | ||
|  | 			 Tv = Tt * Tu; | ||
|  | 			 T7i = Tt * Tx; | ||
|  | 			 Tw = W[79]; | ||
|  | 			 Ty = FMA(Tw, Tx, Tv); | ||
|  | 			 T7j = FNMS(Tw, Tu, T7i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TB, TE, TC, T7n, TA, TD; | ||
|  | 			 TB = cr[WS(rs, 56)]; | ||
|  | 			 TE = ci[WS(rs, 56)]; | ||
|  | 			 TA = W[110]; | ||
|  | 			 TC = TA * TB; | ||
|  | 			 T7n = TA * TE; | ||
|  | 			 TD = W[111]; | ||
|  | 			 TF = FMA(TD, TE, TC); | ||
|  | 			 T7o = FNMS(TD, TB, T7n); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tz, TM, TeN, TeO; | ||
|  | 			 Tz = Ts + Ty; | ||
|  | 			 TM = TF + TL; | ||
|  | 			 TN = Tz + TM; | ||
|  | 			 Tjl = Tz - TM; | ||
|  | 			 TeN = T7o + T7q; | ||
|  | 			 TeO = T7h + T7j; | ||
|  | 			 TeP = TeN - TeO; | ||
|  | 			 TiP = TeO + TeN; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7f, T7k, T7m, T7r; | ||
|  | 			 T7f = Ts - Ty; | ||
|  | 			 T7k = T7h - T7j; | ||
|  | 			 T7l = T7f - T7k; | ||
|  | 			 TcB = T7f + T7k; | ||
|  | 			 T7m = TF - TL; | ||
|  | 			 T7r = T7o - T7q; | ||
|  | 			 T7s = T7m + T7r; | ||
|  | 			 TcC = T7m - T7r; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TU, T7D, T1d, T7z, T10, T7F, T17, T7x; | ||
|  | 		    { | ||
|  | 			 E TQ, TT, TR, T7C, TP, TS; | ||
|  | 			 TQ = cr[WS(rs, 4)]; | ||
|  | 			 TT = ci[WS(rs, 4)]; | ||
|  | 			 TP = W[6]; | ||
|  | 			 TR = TP * TQ; | ||
|  | 			 T7C = TP * TT; | ||
|  | 			 TS = W[7]; | ||
|  | 			 TU = FMA(TS, TT, TR); | ||
|  | 			 T7D = FNMS(TS, TQ, T7C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T19, T1c, T1a, T7y, T18, T1b; | ||
|  | 			 T19 = cr[WS(rs, 52)]; | ||
|  | 			 T1c = ci[WS(rs, 52)]; | ||
|  | 			 T18 = W[102]; | ||
|  | 			 T1a = T18 * T19; | ||
|  | 			 T7y = T18 * T1c; | ||
|  | 			 T1b = W[103]; | ||
|  | 			 T1d = FMA(T1b, T1c, T1a); | ||
|  | 			 T7z = FNMS(T1b, T19, T7y); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TW, TZ, TX, T7E, TV, TY; | ||
|  | 			 TW = cr[WS(rs, 36)]; | ||
|  | 			 TZ = ci[WS(rs, 36)]; | ||
|  | 			 TV = W[70]; | ||
|  | 			 TX = TV * TW; | ||
|  | 			 T7E = TV * TZ; | ||
|  | 			 TY = W[71]; | ||
|  | 			 T10 = FMA(TY, TZ, TX); | ||
|  | 			 T7F = FNMS(TY, TW, T7E); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T13, T16, T14, T7w, T12, T15; | ||
|  | 			 T13 = cr[WS(rs, 20)]; | ||
|  | 			 T16 = ci[WS(rs, 20)]; | ||
|  | 			 T12 = W[38]; | ||
|  | 			 T14 = T12 * T13; | ||
|  | 			 T7w = T12 * T16; | ||
|  | 			 T15 = W[39]; | ||
|  | 			 T17 = FMA(T15, T16, T14); | ||
|  | 			 T7x = FNMS(T15, T13, T7w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T11, T1e, TeS, TeT; | ||
|  | 			 T11 = TU + T10; | ||
|  | 			 T1e = T17 + T1d; | ||
|  | 			 T1f = T11 + T1e; | ||
|  | 			 TeR = T11 - T1e; | ||
|  | 			 TeS = T7D + T7F; | ||
|  | 			 TeT = T7x + T7z; | ||
|  | 			 TeU = TeS - TeT; | ||
|  | 			 Ths = TeS + TeT; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7v, T7A, T7G, T7H; | ||
|  | 			 T7v = TU - T10; | ||
|  | 			 T7A = T7x - T7z; | ||
|  | 			 T7B = T7v - T7A; | ||
|  | 			 TcF = T7v + T7A; | ||
|  | 			 T7G = T7D - T7F; | ||
|  | 			 T7H = T17 - T1d; | ||
|  | 			 T7I = T7G + T7H; | ||
|  | 			 TcG = T7G - T7H; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2H, T8Y, T30, T8E, T2N, T90, T2U, T8C; | ||
|  | 		    { | ||
|  | 			 E T2D, T2G, T2E, T8X, T2C, T2F; | ||
|  | 			 T2D = cr[WS(rs, 62)]; | ||
|  | 			 T2G = ci[WS(rs, 62)]; | ||
|  | 			 T2C = W[122]; | ||
|  | 			 T2E = T2C * T2D; | ||
|  | 			 T8X = T2C * T2G; | ||
|  | 			 T2F = W[123]; | ||
|  | 			 T2H = FMA(T2F, T2G, T2E); | ||
|  | 			 T8Y = FNMS(T2F, T2D, T8X); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2W, T2Z, T2X, T8D, T2V, T2Y; | ||
|  | 			 T2W = cr[WS(rs, 46)]; | ||
|  | 			 T2Z = ci[WS(rs, 46)]; | ||
|  | 			 T2V = W[90]; | ||
|  | 			 T2X = T2V * T2W; | ||
|  | 			 T8D = T2V * T2Z; | ||
|  | 			 T2Y = W[91]; | ||
|  | 			 T30 = FMA(T2Y, T2Z, T2X); | ||
|  | 			 T8E = FNMS(T2Y, T2W, T8D); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2J, T2M, T2K, T8Z, T2I, T2L; | ||
|  | 			 T2J = cr[WS(rs, 30)]; | ||
|  | 			 T2M = ci[WS(rs, 30)]; | ||
|  | 			 T2I = W[58]; | ||
|  | 			 T2K = T2I * T2J; | ||
|  | 			 T8Z = T2I * T2M; | ||
|  | 			 T2L = W[59]; | ||
|  | 			 T2N = FMA(T2L, T2M, T2K); | ||
|  | 			 T90 = FNMS(T2L, T2J, T8Z); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2Q, T2T, T2R, T8B, T2P, T2S; | ||
|  | 			 T2Q = cr[WS(rs, 14)]; | ||
|  | 			 T2T = ci[WS(rs, 14)]; | ||
|  | 			 T2P = W[26]; | ||
|  | 			 T2R = T2P * T2Q; | ||
|  | 			 T8B = T2P * T2T; | ||
|  | 			 T2S = W[27]; | ||
|  | 			 T2U = FMA(T2S, T2T, T2R); | ||
|  | 			 T8C = FNMS(T2S, T2Q, T8B); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2O, T31, Tfe, Tff; | ||
|  | 			 T2O = T2H + T2N; | ||
|  | 			 T31 = T2U + T30; | ||
|  | 			 T32 = T2O + T31; | ||
|  | 			 Tfj = T2O - T31; | ||
|  | 			 Tfe = T8Y + T90; | ||
|  | 			 Tff = T8C + T8E; | ||
|  | 			 Tfg = Tfe - Tff; | ||
|  | 			 ThB = Tfe + Tff; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8A, T8F, T91, T92; | ||
|  | 			 T8A = T2H - T2N; | ||
|  | 			 T8F = T8C - T8E; | ||
|  | 			 T8G = T8A - T8F; | ||
|  | 			 TcU = T8A + T8F; | ||
|  | 			 T91 = T8Y - T90; | ||
|  | 			 T92 = T2U - T30; | ||
|  | 			 T93 = T91 + T92; | ||
|  | 			 TcX = T91 - T92; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3C, Ta5, T3V, T9f, T3I, Ta7, T3P, T9d; | ||
|  | 		    { | ||
|  | 			 E T3y, T3B, T3z, Ta4, T3x, T3A; | ||
|  | 			 T3y = cr[WS(rs, 1)]; | ||
|  | 			 T3B = ci[WS(rs, 1)]; | ||
|  | 			 T3x = W[0]; | ||
|  | 			 T3z = T3x * T3y; | ||
|  | 			 Ta4 = T3x * T3B; | ||
|  | 			 T3A = W[1]; | ||
|  | 			 T3C = FMA(T3A, T3B, T3z); | ||
|  | 			 Ta5 = FNMS(T3A, T3y, Ta4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3R, T3U, T3S, T9e, T3Q, T3T; | ||
|  | 			 T3R = cr[WS(rs, 49)]; | ||
|  | 			 T3U = ci[WS(rs, 49)]; | ||
|  | 			 T3Q = W[96]; | ||
|  | 			 T3S = T3Q * T3R; | ||
|  | 			 T9e = T3Q * T3U; | ||
|  | 			 T3T = W[97]; | ||
|  | 			 T3V = FMA(T3T, T3U, T3S); | ||
|  | 			 T9f = FNMS(T3T, T3R, T9e); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3E, T3H, T3F, Ta6, T3D, T3G; | ||
|  | 			 T3E = cr[WS(rs, 33)]; | ||
|  | 			 T3H = ci[WS(rs, 33)]; | ||
|  | 			 T3D = W[64]; | ||
|  | 			 T3F = T3D * T3E; | ||
|  | 			 Ta6 = T3D * T3H; | ||
|  | 			 T3G = W[65]; | ||
|  | 			 T3I = FMA(T3G, T3H, T3F); | ||
|  | 			 Ta7 = FNMS(T3G, T3E, Ta6); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3L, T3O, T3M, T9c, T3K, T3N; | ||
|  | 			 T3L = cr[WS(rs, 17)]; | ||
|  | 			 T3O = ci[WS(rs, 17)]; | ||
|  | 			 T3K = W[32]; | ||
|  | 			 T3M = T3K * T3L; | ||
|  | 			 T9c = T3K * T3O; | ||
|  | 			 T3N = W[33]; | ||
|  | 			 T3P = FMA(T3N, T3O, T3M); | ||
|  | 			 T9d = FNMS(T3N, T3L, T9c); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3J, T3W, TfI, TfJ; | ||
|  | 			 T3J = T3C + T3I; | ||
|  | 			 T3W = T3P + T3V; | ||
|  | 			 T3X = T3J + T3W; | ||
|  | 			 Tfr = T3J - T3W; | ||
|  | 			 TfI = Ta5 + Ta7; | ||
|  | 			 TfJ = T9d + T9f; | ||
|  | 			 TfK = TfI - TfJ; | ||
|  | 			 ThM = TfI + TfJ; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9b, T9g, Ta8, Ta9; | ||
|  | 			 T9b = T3C - T3I; | ||
|  | 			 T9g = T9d - T9f; | ||
|  | 			 T9h = T9b - T9g; | ||
|  | 			 Td3 = T9b + T9g; | ||
|  | 			 Ta8 = Ta5 - Ta7; | ||
|  | 			 Ta9 = T3P - T3V; | ||
|  | 			 Taa = Ta8 + Ta9; | ||
|  | 			 Tde = Ta8 - Ta9; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h; | ||
|  | 		    { | ||
|  | 			 E T2b, T2e, T2c, T89, T2a, T2d; | ||
|  | 			 T2b = cr[WS(rs, 10)]; | ||
|  | 			 T2e = ci[WS(rs, 10)]; | ||
|  | 			 T2a = W[18]; | ||
|  | 			 T2c = T2a * T2b; | ||
|  | 			 T89 = T2a * T2e; | ||
|  | 			 T2d = W[19]; | ||
|  | 			 T2f = FMA(T2d, T2e, T2c); | ||
|  | 			 T8a = FNMS(T2d, T2b, T89); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2u, T2x, T2v, T8i, T2t, T2w; | ||
|  | 			 T2u = cr[WS(rs, 26)]; | ||
|  | 			 T2x = ci[WS(rs, 26)]; | ||
|  | 			 T2t = W[50]; | ||
|  | 			 T2v = T2t * T2u; | ||
|  | 			 T8i = T2t * T2x; | ||
|  | 			 T2w = W[51]; | ||
|  | 			 T2y = FMA(T2w, T2x, T2v); | ||
|  | 			 T8j = FNMS(T2w, T2u, T8i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2h, T2k, T2i, T8b, T2g, T2j; | ||
|  | 			 T2h = cr[WS(rs, 42)]; | ||
|  | 			 T2k = ci[WS(rs, 42)]; | ||
|  | 			 T2g = W[82]; | ||
|  | 			 T2i = T2g * T2h; | ||
|  | 			 T8b = T2g * T2k; | ||
|  | 			 T2j = W[83]; | ||
|  | 			 T2l = FMA(T2j, T2k, T2i); | ||
|  | 			 T8c = FNMS(T2j, T2h, T8b); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2o, T2r, T2p, T8g, T2n, T2q; | ||
|  | 			 T2o = cr[WS(rs, 58)]; | ||
|  | 			 T2r = ci[WS(rs, 58)]; | ||
|  | 			 T2n = W[114]; | ||
|  | 			 T2p = T2n * T2o; | ||
|  | 			 T8g = T2n * T2r; | ||
|  | 			 T2q = W[115]; | ||
|  | 			 T2s = FMA(T2q, T2r, T2p); | ||
|  | 			 T8h = FNMS(T2q, T2o, T8g); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2m, T2z, Tf9, Tfa; | ||
|  | 			 T2m = T2f + T2l; | ||
|  | 			 T2z = T2s + T2y; | ||
|  | 			 T2A = T2m + T2z; | ||
|  | 			 Tf6 = T2m - T2z; | ||
|  | 			 Tf9 = T8h + T8j; | ||
|  | 			 Tfa = T8a + T8c; | ||
|  | 			 Tfb = Tf9 - Tfa; | ||
|  | 			 Thx = Tfa + Tf9; | ||
|  | 			 { | ||
|  | 			      E T8e, T8v, T8l, T8w; | ||
|  | 			      { | ||
|  | 				   E T88, T8d, T8f, T8k; | ||
|  | 				   T88 = T2f - T2l; | ||
|  | 				   T8d = T8a - T8c; | ||
|  | 				   T8e = T88 - T8d; | ||
|  | 				   T8v = T88 + T8d; | ||
|  | 				   T8f = T2s - T2y; | ||
|  | 				   T8k = T8h - T8j; | ||
|  | 				   T8l = T8f + T8k; | ||
|  | 				   T8w = T8k - T8f; | ||
|  | 			      } | ||
|  | 			      T8m = T8e + T8l; | ||
|  | 			      TcR = T8l - T8e; | ||
|  | 			      T8x = T8v + T8w; | ||
|  | 			      TcO = T8v - T8w; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q; | ||
|  | 		    { | ||
|  | 			 E T34, T37, T35, T8I, T33, T36; | ||
|  | 			 T34 = cr[WS(rs, 6)]; | ||
|  | 			 T37 = ci[WS(rs, 6)]; | ||
|  | 			 T33 = W[10]; | ||
|  | 			 T35 = T33 * T34; | ||
|  | 			 T8I = T33 * T37; | ||
|  | 			 T36 = W[11]; | ||
|  | 			 T38 = FMA(T36, T37, T35); | ||
|  | 			 T8J = FNMS(T36, T34, T8I); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3n, T3q, T3o, T8R, T3m, T3p; | ||
|  | 			 T3n = cr[WS(rs, 22)]; | ||
|  | 			 T3q = ci[WS(rs, 22)]; | ||
|  | 			 T3m = W[42]; | ||
|  | 			 T3o = T3m * T3n; | ||
|  | 			 T8R = T3m * T3q; | ||
|  | 			 T3p = W[43]; | ||
|  | 			 T3r = FMA(T3p, T3q, T3o); | ||
|  | 			 T8S = FNMS(T3p, T3n, T8R); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3a, T3d, T3b, T8K, T39, T3c; | ||
|  | 			 T3a = cr[WS(rs, 38)]; | ||
|  | 			 T3d = ci[WS(rs, 38)]; | ||
|  | 			 T39 = W[74]; | ||
|  | 			 T3b = T39 * T3a; | ||
|  | 			 T8K = T39 * T3d; | ||
|  | 			 T3c = W[75]; | ||
|  | 			 T3e = FMA(T3c, T3d, T3b); | ||
|  | 			 T8L = FNMS(T3c, T3a, T8K); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3h, T3k, T3i, T8P, T3g, T3j; | ||
|  | 			 T3h = cr[WS(rs, 54)]; | ||
|  | 			 T3k = ci[WS(rs, 54)]; | ||
|  | 			 T3g = W[106]; | ||
|  | 			 T3i = T3g * T3h; | ||
|  | 			 T8P = T3g * T3k; | ||
|  | 			 T3j = W[107]; | ||
|  | 			 T3l = FMA(T3j, T3k, T3i); | ||
|  | 			 T8Q = FNMS(T3j, T3h, T8P); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3f, T3s, Tfk, Tfl; | ||
|  | 			 T3f = T38 + T3e; | ||
|  | 			 T3s = T3l + T3r; | ||
|  | 			 T3t = T3f + T3s; | ||
|  | 			 Tfh = T3f - T3s; | ||
|  | 			 Tfk = T8Q + T8S; | ||
|  | 			 Tfl = T8J + T8L; | ||
|  | 			 Tfm = Tfk - Tfl; | ||
|  | 			 ThC = Tfl + Tfk; | ||
|  | 			 { | ||
|  | 			      E T8N, T94, T8U, T95; | ||
|  | 			      { | ||
|  | 				   E T8H, T8M, T8O, T8T; | ||
|  | 				   T8H = T38 - T3e; | ||
|  | 				   T8M = T8J - T8L; | ||
|  | 				   T8N = T8H - T8M; | ||
|  | 				   T94 = T8H + T8M; | ||
|  | 				   T8O = T3l - T3r; | ||
|  | 				   T8T = T8Q - T8S; | ||
|  | 				   T8U = T8O + T8T; | ||
|  | 				   T95 = T8T - T8O; | ||
|  | 			      } | ||
|  | 			      T8V = T8N + T8U; | ||
|  | 			      TcY = T8U - T8N; | ||
|  | 			      T96 = T94 + T95; | ||
|  | 			      TcV = T94 - T95; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r; | ||
|  | 		    { | ||
|  | 			 E T3Z, T42, T40, T9j, T3Y, T41; | ||
|  | 			 T3Z = cr[WS(rs, 9)]; | ||
|  | 			 T42 = ci[WS(rs, 9)]; | ||
|  | 			 T3Y = W[16]; | ||
|  | 			 T40 = T3Y * T3Z; | ||
|  | 			 T9j = T3Y * T42; | ||
|  | 			 T41 = W[17]; | ||
|  | 			 T43 = FMA(T41, T42, T40); | ||
|  | 			 T9k = FNMS(T41, T3Z, T9j); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4i, T4l, T4j, T9s, T4h, T4k; | ||
|  | 			 T4i = cr[WS(rs, 25)]; | ||
|  | 			 T4l = ci[WS(rs, 25)]; | ||
|  | 			 T4h = W[48]; | ||
|  | 			 T4j = T4h * T4i; | ||
|  | 			 T9s = T4h * T4l; | ||
|  | 			 T4k = W[49]; | ||
|  | 			 T4m = FMA(T4k, T4l, T4j); | ||
|  | 			 T9t = FNMS(T4k, T4i, T9s); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T45, T48, T46, T9l, T44, T47; | ||
|  | 			 T45 = cr[WS(rs, 41)]; | ||
|  | 			 T48 = ci[WS(rs, 41)]; | ||
|  | 			 T44 = W[80]; | ||
|  | 			 T46 = T44 * T45; | ||
|  | 			 T9l = T44 * T48; | ||
|  | 			 T47 = W[81]; | ||
|  | 			 T49 = FMA(T47, T48, T46); | ||
|  | 			 T9m = FNMS(T47, T45, T9l); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4c, T4f, T4d, T9q, T4b, T4e; | ||
|  | 			 T4c = cr[WS(rs, 57)]; | ||
|  | 			 T4f = ci[WS(rs, 57)]; | ||
|  | 			 T4b = W[112]; | ||
|  | 			 T4d = T4b * T4c; | ||
|  | 			 T9q = T4b * T4f; | ||
|  | 			 T4e = W[113]; | ||
|  | 			 T4g = FMA(T4e, T4f, T4d); | ||
|  | 			 T9r = FNMS(T4e, T4c, T9q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4a, T4n, Tfs, Tft; | ||
|  | 			 T4a = T43 + T49; | ||
|  | 			 T4n = T4g + T4m; | ||
|  | 			 T4o = T4a + T4n; | ||
|  | 			 TfL = T4a - T4n; | ||
|  | 			 Tfs = T9r + T9t; | ||
|  | 			 Tft = T9k + T9m; | ||
|  | 			 Tfu = Tfs - Tft; | ||
|  | 			 ThN = Tft + Tfs; | ||
|  | 			 { | ||
|  | 			      E T9o, Tab, T9v, Tac; | ||
|  | 			      { | ||
|  | 				   E T9i, T9n, T9p, T9u; | ||
|  | 				   T9i = T43 - T49; | ||
|  | 				   T9n = T9k - T9m; | ||
|  | 				   T9o = T9i - T9n; | ||
|  | 				   Tab = T9i + T9n; | ||
|  | 				   T9p = T4g - T4m; | ||
|  | 				   T9u = T9r - T9t; | ||
|  | 				   T9v = T9p + T9u; | ||
|  | 				   Tac = T9u - T9p; | ||
|  | 			      } | ||
|  | 			      T9w = T9o + T9v; | ||
|  | 			      Tdf = T9v - T9o; | ||
|  | 			      Tad = Tab + Tac; | ||
|  | 			      Td4 = Tab - Tac; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA; | ||
|  | 		    { | ||
|  | 			 E T5M, T5P, T5N, Tas, T5L, T5O; | ||
|  | 			 T5M = cr[WS(rs, 7)]; | ||
|  | 			 T5P = ci[WS(rs, 7)]; | ||
|  | 			 T5L = W[12]; | ||
|  | 			 T5N = T5L * T5M; | ||
|  | 			 Tas = T5L * T5P; | ||
|  | 			 T5O = W[13]; | ||
|  | 			 T5Q = FMA(T5O, T5P, T5N); | ||
|  | 			 Tat = FNMS(T5O, T5M, Tas); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T65, T68, T66, TaB, T64, T67; | ||
|  | 			 T65 = cr[WS(rs, 23)]; | ||
|  | 			 T68 = ci[WS(rs, 23)]; | ||
|  | 			 T64 = W[44]; | ||
|  | 			 T66 = T64 * T65; | ||
|  | 			 TaB = T64 * T68; | ||
|  | 			 T67 = W[45]; | ||
|  | 			 T69 = FMA(T67, T68, T66); | ||
|  | 			 TaC = FNMS(T67, T65, TaB); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5S, T5V, T5T, Tau, T5R, T5U; | ||
|  | 			 T5S = cr[WS(rs, 39)]; | ||
|  | 			 T5V = ci[WS(rs, 39)]; | ||
|  | 			 T5R = W[76]; | ||
|  | 			 T5T = T5R * T5S; | ||
|  | 			 Tau = T5R * T5V; | ||
|  | 			 T5U = W[77]; | ||
|  | 			 T5W = FMA(T5U, T5V, T5T); | ||
|  | 			 Tav = FNMS(T5U, T5S, Tau); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5Z, T62, T60, Taz, T5Y, T61; | ||
|  | 			 T5Z = cr[WS(rs, 55)]; | ||
|  | 			 T62 = ci[WS(rs, 55)]; | ||
|  | 			 T5Y = W[108]; | ||
|  | 			 T60 = T5Y * T5Z; | ||
|  | 			 Taz = T5Y * T62; | ||
|  | 			 T61 = W[109]; | ||
|  | 			 T63 = FMA(T61, T62, T60); | ||
|  | 			 TaA = FNMS(T61, T5Z, Taz); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5X, T6a, TfT, TfU; | ||
|  | 			 T5X = T5Q + T5W; | ||
|  | 			 T6a = T63 + T69; | ||
|  | 			 T6b = T5X + T6a; | ||
|  | 			 Tg9 = T6a - T5X; | ||
|  | 			 TfT = TaA + TaC; | ||
|  | 			 TfU = Tat + Tav; | ||
|  | 			 TfV = TfT - TfU; | ||
|  | 			 ThY = TfU + TfT; | ||
|  | 			 { | ||
|  | 			      E Tax, Tbl, TaE, Tbk; | ||
|  | 			      { | ||
|  | 				   E Tar, Taw, Tay, TaD; | ||
|  | 				   Tar = T5Q - T5W; | ||
|  | 				   Taw = Tat - Tav; | ||
|  | 				   Tax = Tar - Taw; | ||
|  | 				   Tbl = Tar + Taw; | ||
|  | 				   Tay = T63 - T69; | ||
|  | 				   TaD = TaA - TaC; | ||
|  | 				   TaE = Tay + TaD; | ||
|  | 				   Tbk = Tay - TaD; | ||
|  | 			      } | ||
|  | 			      TaF = Tax + TaE; | ||
|  | 			      Tdy = TaE - Tax; | ||
|  | 			      Tbm = Tbk - Tbl; | ||
|  | 			      Tdn = Tbl + Tbk; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4v, T9G, T4O, T9C, T4B, T9I, T4I, T9A; | ||
|  | 		    { | ||
|  | 			 E T4r, T4u, T4s, T9F, T4q, T4t; | ||
|  | 			 T4r = cr[WS(rs, 5)]; | ||
|  | 			 T4u = ci[WS(rs, 5)]; | ||
|  | 			 T4q = W[8]; | ||
|  | 			 T4s = T4q * T4r; | ||
|  | 			 T9F = T4q * T4u; | ||
|  | 			 T4t = W[9]; | ||
|  | 			 T4v = FMA(T4t, T4u, T4s); | ||
|  | 			 T9G = FNMS(T4t, T4r, T9F); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4K, T4N, T4L, T9B, T4J, T4M; | ||
|  | 			 T4K = cr[WS(rs, 53)]; | ||
|  | 			 T4N = ci[WS(rs, 53)]; | ||
|  | 			 T4J = W[104]; | ||
|  | 			 T4L = T4J * T4K; | ||
|  | 			 T9B = T4J * T4N; | ||
|  | 			 T4M = W[105]; | ||
|  | 			 T4O = FMA(T4M, T4N, T4L); | ||
|  | 			 T9C = FNMS(T4M, T4K, T9B); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4x, T4A, T4y, T9H, T4w, T4z; | ||
|  | 			 T4x = cr[WS(rs, 37)]; | ||
|  | 			 T4A = ci[WS(rs, 37)]; | ||
|  | 			 T4w = W[72]; | ||
|  | 			 T4y = T4w * T4x; | ||
|  | 			 T9H = T4w * T4A; | ||
|  | 			 T4z = W[73]; | ||
|  | 			 T4B = FMA(T4z, T4A, T4y); | ||
|  | 			 T9I = FNMS(T4z, T4x, T9H); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4E, T4H, T4F, T9z, T4D, T4G; | ||
|  | 			 T4E = cr[WS(rs, 21)]; | ||
|  | 			 T4H = ci[WS(rs, 21)]; | ||
|  | 			 T4D = W[40]; | ||
|  | 			 T4F = T4D * T4E; | ||
|  | 			 T9z = T4D * T4H; | ||
|  | 			 T4G = W[41]; | ||
|  | 			 T4I = FMA(T4G, T4H, T4F); | ||
|  | 			 T9A = FNMS(T4G, T4E, T9z); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4C, T4P, Tfw, Tfx, Tfy, Tfz; | ||
|  | 			 T4C = T4v + T4B; | ||
|  | 			 T4P = T4I + T4O; | ||
|  | 			 Tfw = T4C - T4P; | ||
|  | 			 Tfx = T9G + T9I; | ||
|  | 			 Tfy = T9A + T9C; | ||
|  | 			 Tfz = Tfx - Tfy; | ||
|  | 			 T4Q = T4C + T4P; | ||
|  | 			 ThJ = Tfx + Tfy; | ||
|  | 			 TfA = Tfw - Tfz; | ||
|  | 			 TfN = Tfw + Tfz; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9E, Td6, T9L, Td7; | ||
|  | 			 { | ||
|  | 			      E T9y, T9D, T9J, T9K; | ||
|  | 			      T9y = T4v - T4B; | ||
|  | 			      T9D = T9A - T9C; | ||
|  | 			      T9E = T9y - T9D; | ||
|  | 			      Td6 = T9y + T9D; | ||
|  | 			      T9J = T9G - T9I; | ||
|  | 			      T9K = T4I - T4O; | ||
|  | 			      T9L = T9J + T9K; | ||
|  | 			      Td7 = T9J - T9K; | ||
|  | 			 } | ||
|  | 			 T9M = FNMS(KP414213562, T9L, T9E); | ||
|  | 			 Tdh = FNMS(KP414213562, Td6, Td7); | ||
|  | 			 Taf = FMA(KP414213562, T9E, T9L); | ||
|  | 			 Td8 = FMA(KP414213562, Td7, Td6); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4W, T9V, T5f, T9R, T52, T9X, T59, T9P; | ||
|  | 		    { | ||
|  | 			 E T4S, T4V, T4T, T9U, T4R, T4U; | ||
|  | 			 T4S = cr[WS(rs, 61)]; | ||
|  | 			 T4V = ci[WS(rs, 61)]; | ||
|  | 			 T4R = W[120]; | ||
|  | 			 T4T = T4R * T4S; | ||
|  | 			 T9U = T4R * T4V; | ||
|  | 			 T4U = W[121]; | ||
|  | 			 T4W = FMA(T4U, T4V, T4T); | ||
|  | 			 T9V = FNMS(T4U, T4S, T9U); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5b, T5e, T5c, T9Q, T5a, T5d; | ||
|  | 			 T5b = cr[WS(rs, 45)]; | ||
|  | 			 T5e = ci[WS(rs, 45)]; | ||
|  | 			 T5a = W[88]; | ||
|  | 			 T5c = T5a * T5b; | ||
|  | 			 T9Q = T5a * T5e; | ||
|  | 			 T5d = W[89]; | ||
|  | 			 T5f = FMA(T5d, T5e, T5c); | ||
|  | 			 T9R = FNMS(T5d, T5b, T9Q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4Y, T51, T4Z, T9W, T4X, T50; | ||
|  | 			 T4Y = cr[WS(rs, 29)]; | ||
|  | 			 T51 = ci[WS(rs, 29)]; | ||
|  | 			 T4X = W[56]; | ||
|  | 			 T4Z = T4X * T4Y; | ||
|  | 			 T9W = T4X * T51; | ||
|  | 			 T50 = W[57]; | ||
|  | 			 T52 = FMA(T50, T51, T4Z); | ||
|  | 			 T9X = FNMS(T50, T4Y, T9W); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T55, T58, T56, T9O, T54, T57; | ||
|  | 			 T55 = cr[WS(rs, 13)]; | ||
|  | 			 T58 = ci[WS(rs, 13)]; | ||
|  | 			 T54 = W[24]; | ||
|  | 			 T56 = T54 * T55; | ||
|  | 			 T9O = T54 * T58; | ||
|  | 			 T57 = W[25]; | ||
|  | 			 T59 = FMA(T57, T58, T56); | ||
|  | 			 T9P = FNMS(T57, T55, T9O); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T53, T5g, TfB, TfC, TfD, TfE; | ||
|  | 			 T53 = T4W + T52; | ||
|  | 			 T5g = T59 + T5f; | ||
|  | 			 TfB = T53 - T5g; | ||
|  | 			 TfC = T9V + T9X; | ||
|  | 			 TfD = T9P + T9R; | ||
|  | 			 TfE = TfC - TfD; | ||
|  | 			 T5h = T53 + T5g; | ||
|  | 			 ThI = TfC + TfD; | ||
|  | 			 TfF = TfB + TfE; | ||
|  | 			 TfO = TfE - TfB; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9T, Td9, Ta0, Tda; | ||
|  | 			 { | ||
|  | 			      E T9N, T9S, T9Y, T9Z; | ||
|  | 			      T9N = T4W - T52; | ||
|  | 			      T9S = T9P - T9R; | ||
|  | 			      T9T = T9N - T9S; | ||
|  | 			      Td9 = T9N + T9S; | ||
|  | 			      T9Y = T9V - T9X; | ||
|  | 			      T9Z = T59 - T5f; | ||
|  | 			      Ta0 = T9Y + T9Z; | ||
|  | 			      Tda = T9Y - T9Z; | ||
|  | 			 } | ||
|  | 			 Ta1 = FMA(KP414213562, Ta0, T9T); | ||
|  | 			 Tdi = FMA(KP414213562, Td9, Tda); | ||
|  | 			 Tag = FNMS(KP414213562, T9T, Ta0); | ||
|  | 			 Tdb = FNMS(KP414213562, Tda, Td9); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6i, TaQ, T6B, TaL, T6o, TaS, T6v, TaJ; | ||
|  | 		    { | ||
|  | 			 E T6e, T6h, T6f, TaP, T6d, T6g; | ||
|  | 			 T6e = cr[WS(rs, 3)]; | ||
|  | 			 T6h = ci[WS(rs, 3)]; | ||
|  | 			 T6d = W[4]; | ||
|  | 			 T6f = T6d * T6e; | ||
|  | 			 TaP = T6d * T6h; | ||
|  | 			 T6g = W[5]; | ||
|  | 			 T6i = FMA(T6g, T6h, T6f); | ||
|  | 			 TaQ = FNMS(T6g, T6e, TaP); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6x, T6A, T6y, TaK, T6w, T6z; | ||
|  | 			 T6x = cr[WS(rs, 51)]; | ||
|  | 			 T6A = ci[WS(rs, 51)]; | ||
|  | 			 T6w = W[100]; | ||
|  | 			 T6y = T6w * T6x; | ||
|  | 			 TaK = T6w * T6A; | ||
|  | 			 T6z = W[101]; | ||
|  | 			 T6B = FMA(T6z, T6A, T6y); | ||
|  | 			 TaL = FNMS(T6z, T6x, TaK); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6k, T6n, T6l, TaR, T6j, T6m; | ||
|  | 			 T6k = cr[WS(rs, 35)]; | ||
|  | 			 T6n = ci[WS(rs, 35)]; | ||
|  | 			 T6j = W[68]; | ||
|  | 			 T6l = T6j * T6k; | ||
|  | 			 TaR = T6j * T6n; | ||
|  | 			 T6m = W[69]; | ||
|  | 			 T6o = FMA(T6m, T6n, T6l); | ||
|  | 			 TaS = FNMS(T6m, T6k, TaR); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6r, T6u, T6s, TaI, T6q, T6t; | ||
|  | 			 T6r = cr[WS(rs, 19)]; | ||
|  | 			 T6u = ci[WS(rs, 19)]; | ||
|  | 			 T6q = W[36]; | ||
|  | 			 T6s = T6q * T6r; | ||
|  | 			 TaI = T6q * T6u; | ||
|  | 			 T6t = W[37]; | ||
|  | 			 T6v = FMA(T6t, T6u, T6s); | ||
|  | 			 TaJ = FNMS(T6t, T6r, TaI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6p, T6C, TfX, TfY, TfZ, Tg0; | ||
|  | 			 T6p = T6i + T6o; | ||
|  | 			 T6C = T6v + T6B; | ||
|  | 			 TfX = T6p - T6C; | ||
|  | 			 TfY = TaQ + TaS; | ||
|  | 			 TfZ = TaJ + TaL; | ||
|  | 			 Tg0 = TfY - TfZ; | ||
|  | 			 T6D = T6p + T6C; | ||
|  | 			 ThU = TfY + TfZ; | ||
|  | 			 Tg1 = TfX - Tg0; | ||
|  | 			 Tgf = TfX + Tg0; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaN, Tdp, TaU, Tdq; | ||
|  | 			 { | ||
|  | 			      E TaH, TaM, TaO, TaT; | ||
|  | 			      TaH = T6i - T6o; | ||
|  | 			      TaM = TaJ - TaL; | ||
|  | 			      TaN = TaH - TaM; | ||
|  | 			      Tdp = TaH + TaM; | ||
|  | 			      TaO = T6B - T6v; | ||
|  | 			      TaT = TaQ - TaS; | ||
|  | 			      TaU = TaO - TaT; | ||
|  | 			      Tdq = TaT + TaO; | ||
|  | 			 } | ||
|  | 			 TaV = FMA(KP414213562, TaU, TaN); | ||
|  | 			 TdA = FNMS(KP414213562, Tdp, Tdq); | ||
|  | 			 Tbo = FNMS(KP414213562, TaN, TaU); | ||
|  | 			 Tdr = FMA(KP414213562, Tdq, Tdp); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6J, Tb5, T72, Tb0, T6P, Tb7, T6W, TaY; | ||
|  | 		    { | ||
|  | 			 E T6F, T6I, T6G, Tb4, T6E, T6H; | ||
|  | 			 T6F = cr[WS(rs, 59)]; | ||
|  | 			 T6I = ci[WS(rs, 59)]; | ||
|  | 			 T6E = W[116]; | ||
|  | 			 T6G = T6E * T6F; | ||
|  | 			 Tb4 = T6E * T6I; | ||
|  | 			 T6H = W[117]; | ||
|  | 			 T6J = FMA(T6H, T6I, T6G); | ||
|  | 			 Tb5 = FNMS(T6H, T6F, Tb4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6Y, T71, T6Z, TaZ, T6X, T70; | ||
|  | 			 T6Y = cr[WS(rs, 43)]; | ||
|  | 			 T71 = ci[WS(rs, 43)]; | ||
|  | 			 T6X = W[84]; | ||
|  | 			 T6Z = T6X * T6Y; | ||
|  | 			 TaZ = T6X * T71; | ||
|  | 			 T70 = W[85]; | ||
|  | 			 T72 = FMA(T70, T71, T6Z); | ||
|  | 			 Tb0 = FNMS(T70, T6Y, TaZ); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6L, T6O, T6M, Tb6, T6K, T6N; | ||
|  | 			 T6L = cr[WS(rs, 27)]; | ||
|  | 			 T6O = ci[WS(rs, 27)]; | ||
|  | 			 T6K = W[52]; | ||
|  | 			 T6M = T6K * T6L; | ||
|  | 			 Tb6 = T6K * T6O; | ||
|  | 			 T6N = W[53]; | ||
|  | 			 T6P = FMA(T6N, T6O, T6M); | ||
|  | 			 Tb7 = FNMS(T6N, T6L, Tb6); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6S, T6V, T6T, TaX, T6R, T6U; | ||
|  | 			 T6S = cr[WS(rs, 11)]; | ||
|  | 			 T6V = ci[WS(rs, 11)]; | ||
|  | 			 T6R = W[20]; | ||
|  | 			 T6T = T6R * T6S; | ||
|  | 			 TaX = T6R * T6V; | ||
|  | 			 T6U = W[21]; | ||
|  | 			 T6W = FMA(T6U, T6V, T6T); | ||
|  | 			 TaY = FNMS(T6U, T6S, TaX); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6Q, T73, Tg2, Tg3, Tg4, Tg5; | ||
|  | 			 T6Q = T6J + T6P; | ||
|  | 			 T73 = T6W + T72; | ||
|  | 			 Tg2 = T6Q - T73; | ||
|  | 			 Tg3 = Tb5 + Tb7; | ||
|  | 			 Tg4 = TaY + Tb0; | ||
|  | 			 Tg5 = Tg3 - Tg4; | ||
|  | 			 T74 = T6Q + T73; | ||
|  | 			 ThT = Tg3 + Tg4; | ||
|  | 			 Tg6 = Tg2 + Tg5; | ||
|  | 			 Tge = Tg2 - Tg5; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb2, Tds, Tb9, Tdt; | ||
|  | 			 { | ||
|  | 			      E TaW, Tb1, Tb3, Tb8; | ||
|  | 			      TaW = T6J - T6P; | ||
|  | 			      Tb1 = TaY - Tb0; | ||
|  | 			      Tb2 = TaW - Tb1; | ||
|  | 			      Tds = TaW + Tb1; | ||
|  | 			      Tb3 = T72 - T6W; | ||
|  | 			      Tb8 = Tb5 - Tb7; | ||
|  | 			      Tb9 = Tb3 - Tb8; | ||
|  | 			      Tdt = Tb8 + Tb3; | ||
|  | 			 } | ||
|  | 			 Tba = FNMS(KP414213562, Tb9, Tb2); | ||
|  | 			 TdB = FMA(KP414213562, Tds, Tdt); | ||
|  | 			 Tbp = FMA(KP414213562, Tb2, Tb9); | ||
|  | 			 Tdu = FNMS(KP414213562, Tdt, Tds); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiJ, TiC, TiG, T5j, TiK, Tix; | ||
|  | 		    E TiF; | ||
|  | 		    { | ||
|  | 			 E TO, T1H, Tip, Tiq; | ||
|  | 			 TO = Tm + TN; | ||
|  | 			 T1H = T1f + T1G; | ||
|  | 			 T1I = TO + T1H; | ||
|  | 			 Tio = TO - T1H; | ||
|  | 			 { | ||
|  | 			      E T2B, T3u, TiO, TiW; | ||
|  | 			      T2B = T29 + T2A; | ||
|  | 			      T3u = T32 + T3t; | ||
|  | 			      T3v = T2B + T3u; | ||
|  | 			      Tj1 = T2B - T3u; | ||
|  | 			      TiO = Ths + Thr; | ||
|  | 			      TiW = TiP + TiV; | ||
|  | 			      TiX = TiO + TiW; | ||
|  | 			      Tj2 = TiW - TiO; | ||
|  | 			 } | ||
|  | 			 Tip = ThB + ThC; | ||
|  | 			 Tiq = Thw + Thx; | ||
|  | 			 Tir = Tip - Tiq; | ||
|  | 			 TiN = Tiq + Tip; | ||
|  | 			 { | ||
|  | 			      E T6c, T75, Tiy, Tiz, TiA, TiB; | ||
|  | 			      T6c = T5K + T6b; | ||
|  | 			      T75 = T6D + T74; | ||
|  | 			      Tiy = T6c - T75; | ||
|  | 			      Tiz = ThX + ThY; | ||
|  | 			      TiA = ThU + ThT; | ||
|  | 			      TiB = Tiz - TiA; | ||
|  | 			      T76 = T6c + T75; | ||
|  | 			      TiJ = Tiz + TiA; | ||
|  | 			      TiC = Tiy - TiB; | ||
|  | 			      TiG = Tiy + TiB; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4p, T5i, Tit, Tiu, Tiv, Tiw; | ||
|  | 			      T4p = T3X + T4o; | ||
|  | 			      T5i = T4Q + T5h; | ||
|  | 			      Tit = T4p - T5i; | ||
|  | 			      Tiu = ThM + ThN; | ||
|  | 			      Tiv = ThJ + ThI; | ||
|  | 			      Tiw = Tiu - Tiv; | ||
|  | 			      T5j = T4p + T5i; | ||
|  | 			      TiK = Tiu + Tiv; | ||
|  | 			      Tix = Tit + Tiw; | ||
|  | 			      TiF = Tit - Tiw; | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3w, T77, Tj3, Tj4; | ||
|  | 			 T3w = T1I + T3v; | ||
|  | 			 T77 = T5j + T76; | ||
|  | 			 ci[WS(rs, 31)] = T3w - T77; | ||
|  | 			 cr[0] = T3w + T77; | ||
|  | 			 Tj3 = Tj1 + Tj2; | ||
|  | 			 Tj4 = TiC - Tix; | ||
|  | 			 cr[WS(rs, 56)] = FMS(KP707106781, Tj4, Tj3); | ||
|  | 			 ci[WS(rs, 39)] = FMA(KP707106781, Tj4, Tj3); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tj5, Tj6, Tis, TiD; | ||
|  | 			 Tj5 = Tj2 - Tj1; | ||
|  | 			 Tj6 = TiG - TiF; | ||
|  | 			 cr[WS(rs, 40)] = FMS(KP707106781, Tj6, Tj5); | ||
|  | 			 ci[WS(rs, 55)] = FMA(KP707106781, Tj6, Tj5); | ||
|  | 			 Tis = Tio - Tir; | ||
|  | 			 TiD = Tix + TiC; | ||
|  | 			 ci[WS(rs, 23)] = FNMS(KP707106781, TiD, Tis); | ||
|  | 			 cr[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiE, TiH, TiM, TiY; | ||
|  | 			 TiE = Tio + Tir; | ||
|  | 			 TiH = TiF + TiG; | ||
|  | 			 cr[WS(rs, 24)] = FNMS(KP707106781, TiH, TiE); | ||
|  | 			 ci[WS(rs, 7)] = FMA(KP707106781, TiH, TiE); | ||
|  | 			 TiM = TiK + TiJ; | ||
|  | 			 TiY = TiN + TiX; | ||
|  | 			 cr[WS(rs, 32)] = TiM - TiY; | ||
|  | 			 ci[WS(rs, 63)] = TiM + TiY; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiZ, Tj0, TiI, TiL; | ||
|  | 			 TiZ = T76 - T5j; | ||
|  | 			 Tj0 = TiX - TiN; | ||
|  | 			 cr[WS(rs, 48)] = TiZ - Tj0; | ||
|  | 			 ci[WS(rs, 47)] = TiZ + Tj0; | ||
|  | 			 TiI = T1I - T3v; | ||
|  | 			 TiL = TiJ - TiK; | ||
|  | 			 cr[WS(rs, 16)] = TiI - TiL; | ||
|  | 			 ci[WS(rs, 15)] = TiI + TiL; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T99, Tk2, TbB, TjW, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch; | ||
|  | 		    E Tcr, TbZ, Tkg, Tcn, Tka, Tbs, TbM, Tbw, TbI, T80, Tk9, Tkf, Tby, TbS, TjV; | ||
|  | 		    E Tk1, Tck; | ||
|  | 		    { | ||
|  | 			 E T8z, Tbz, T98, TbA; | ||
|  | 			 { | ||
|  | 			      E T8n, T8y, T8W, T97; | ||
|  | 			      T8n = FMA(KP707106781, T8m, T87); | ||
|  | 			      T8y = FMA(KP707106781, T8x, T8u); | ||
|  | 			      T8z = FNMS(KP198912367, T8y, T8n); | ||
|  | 			      Tbz = FMA(KP198912367, T8n, T8y); | ||
|  | 			      T8W = FMA(KP707106781, T8V, T8G); | ||
|  | 			      T97 = FMA(KP707106781, T96, T93); | ||
|  | 			      T98 = FMA(KP198912367, T97, T8W); | ||
|  | 			      TbA = FNMS(KP198912367, T8W, T97); | ||
|  | 			 } | ||
|  | 			 T99 = T8z + T98; | ||
|  | 			 Tk2 = T98 - T8z; | ||
|  | 			 TbB = Tbz - TbA; | ||
|  | 			 TjW = Tbz + TbA; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta3, TbD, Tai, TbE; | ||
|  | 			 { | ||
|  | 			      E T9x, Ta2, Tae, Tah; | ||
|  | 			      T9x = FMA(KP707106781, T9w, T9h); | ||
|  | 			      Ta2 = T9M + Ta1; | ||
|  | 			      Ta3 = FMA(KP923879532, Ta2, T9x); | ||
|  | 			      TbD = FNMS(KP923879532, Ta2, T9x); | ||
|  | 			      Tae = FMA(KP707106781, Tad, Taa); | ||
|  | 			      Tah = Taf + Tag; | ||
|  | 			      Tai = FMA(KP923879532, Tah, Tae); | ||
|  | 			      TbE = FNMS(KP923879532, Tah, Tae); | ||
|  | 			 } | ||
|  | 			 Taj = FNMS(KP098491403, Tai, Ta3); | ||
|  | 			 TbL = FNMS(KP820678790, TbD, TbE); | ||
|  | 			 Tbv = FMA(KP098491403, Ta3, Tai); | ||
|  | 			 TbF = FMA(KP820678790, TbE, TbD); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tca, Tcs, Tcd, Tct; | ||
|  | 			 { | ||
|  | 			      E Tc8, Tc9, Tcb, Tcc; | ||
|  | 			      Tc8 = FNMS(KP707106781, TaF, Taq); | ||
|  | 			      Tc9 = Tbp - Tbo; | ||
|  | 			      Tca = FNMS(KP923879532, Tc9, Tc8); | ||
|  | 			      Tcs = FMA(KP923879532, Tc9, Tc8); | ||
|  | 			      Tcb = FNMS(KP707106781, Tbm, Tbj); | ||
|  | 			      Tcc = Tba - TaV; | ||
|  | 			      Tcd = FMA(KP923879532, Tcc, Tcb); | ||
|  | 			      Tct = FNMS(KP923879532, Tcc, Tcb); | ||
|  | 			 } | ||
|  | 			 Tce = FNMS(KP534511135, Tcd, Tca); | ||
|  | 			 Tcy = FNMS(KP303346683, Tcs, Tct); | ||
|  | 			 Tci = FMA(KP534511135, Tca, Tcd); | ||
|  | 			 Tcu = FMA(KP303346683, Tct, Tcs); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc3, Tcp, Tc6, Tcq; | ||
|  | 			 { | ||
|  | 			      E Tc1, Tc2, Tc4, Tc5; | ||
|  | 			      Tc1 = FNMS(KP707106781, T9w, T9h); | ||
|  | 			      Tc2 = Taf - Tag; | ||
|  | 			      Tc3 = FNMS(KP923879532, Tc2, Tc1); | ||
|  | 			      Tcp = FMA(KP923879532, Tc2, Tc1); | ||
|  | 			      Tc4 = FNMS(KP707106781, Tad, Taa); | ||
|  | 			      Tc5 = Ta1 - T9M; | ||
|  | 			      Tc6 = FNMS(KP923879532, Tc5, Tc4); | ||
|  | 			      Tcq = FMA(KP923879532, Tc5, Tc4); | ||
|  | 			 } | ||
|  | 			 Tc7 = FNMS(KP534511135, Tc6, Tc3); | ||
|  | 			 Tcx = FNMS(KP303346683, Tcp, Tcq); | ||
|  | 			 Tch = FMA(KP534511135, Tc3, Tc6); | ||
|  | 			 Tcr = FMA(KP303346683, Tcq, Tcp); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbV, Tcm, TbY, Tcl; | ||
|  | 			 { | ||
|  | 			      E TbT, TbU, TbW, TbX; | ||
|  | 			      TbT = FNMS(KP707106781, T96, T93); | ||
|  | 			      TbU = FNMS(KP707106781, T8V, T8G); | ||
|  | 			      TbV = FMA(KP668178637, TbU, TbT); | ||
|  | 			      Tcm = FNMS(KP668178637, TbT, TbU); | ||
|  | 			      TbW = FNMS(KP707106781, T8x, T8u); | ||
|  | 			      TbX = FNMS(KP707106781, T8m, T87); | ||
|  | 			      TbY = FNMS(KP668178637, TbX, TbW); | ||
|  | 			      Tcl = FMA(KP668178637, TbW, TbX); | ||
|  | 			 } | ||
|  | 			 TbZ = TbV - TbY; | ||
|  | 			 Tkg = Tcl - Tcm; | ||
|  | 			 Tcn = Tcl + Tcm; | ||
|  | 			 Tka = TbY + TbV; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbc, TbG, Tbr, TbH; | ||
|  | 			 { | ||
|  | 			      E TaG, Tbb, Tbn, Tbq; | ||
|  | 			      TaG = FMA(KP707106781, TaF, Taq); | ||
|  | 			      Tbb = TaV + Tba; | ||
|  | 			      Tbc = FMA(KP923879532, Tbb, TaG); | ||
|  | 			      TbG = FNMS(KP923879532, Tbb, TaG); | ||
|  | 			      Tbn = FMA(KP707106781, Tbm, Tbj); | ||
|  | 			      Tbq = Tbo + Tbp; | ||
|  | 			      Tbr = FMA(KP923879532, Tbq, Tbn); | ||
|  | 			      TbH = FNMS(KP923879532, Tbq, Tbn); | ||
|  | 			 } | ||
|  | 			 Tbs = FNMS(KP098491403, Tbr, Tbc); | ||
|  | 			 TbM = FNMS(KP820678790, TbG, TbH); | ||
|  | 			 Tbw = FMA(KP098491403, Tbc, Tbr); | ||
|  | 			 TbI = FMA(KP820678790, TbH, TbG); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7u, TbO, TjT, Tk7, T7Z, Tk8, TbR, TjU, T7t, TjS; | ||
|  | 			 T7t = T7l + T7s; | ||
|  | 			 T7u = FMA(KP707106781, T7t, T7e); | ||
|  | 			 TbO = FNMS(KP707106781, T7t, T7e); | ||
|  | 			 TjS = TcB - TcC; | ||
|  | 			 TjT = FMA(KP707106781, TjS, TjR); | ||
|  | 			 Tk7 = FNMS(KP707106781, TjS, TjR); | ||
|  | 			 { | ||
|  | 			      E T7J, T7Y, TbP, TbQ; | ||
|  | 			      T7J = FNMS(KP414213562, T7I, T7B); | ||
|  | 			      T7Y = FMA(KP414213562, T7X, T7Q); | ||
|  | 			      T7Z = T7J + T7Y; | ||
|  | 			      Tk8 = T7Y - T7J; | ||
|  | 			      TbP = FMA(KP414213562, T7B, T7I); | ||
|  | 			      TbQ = FNMS(KP414213562, T7Q, T7X); | ||
|  | 			      TbR = TbP - TbQ; | ||
|  | 			      TjU = TbP + TbQ; | ||
|  | 			 } | ||
|  | 			 T80 = FMA(KP923879532, T7Z, T7u); | ||
|  | 			 Tk9 = FMA(KP923879532, Tk8, Tk7); | ||
|  | 			 Tkf = FNMS(KP923879532, Tk8, Tk7); | ||
|  | 			 Tby = FNMS(KP923879532, T7Z, T7u); | ||
|  | 			 TbS = FNMS(KP923879532, TbR, TbO); | ||
|  | 			 TjV = FMA(KP923879532, TjU, TjT); | ||
|  | 			 Tk1 = FNMS(KP923879532, TjU, TjT); | ||
|  | 			 Tck = FMA(KP923879532, TbR, TbO); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9a, Tbt, TbK, TbN; | ||
|  | 			 T9a = FMA(KP980785280, T99, T80); | ||
|  | 			 Tbt = Taj + Tbs; | ||
|  | 			 cr[WS(rs, 31)] = FNMS(KP995184726, Tbt, T9a); | ||
|  | 			 ci[0] = FMA(KP995184726, Tbt, T9a); | ||
|  | 			 TbK = FNMS(KP980785280, TbB, Tby); | ||
|  | 			 TbN = TbL + TbM; | ||
|  | 			 cr[WS(rs, 23)] = FMA(KP773010453, TbN, TbK); | ||
|  | 			 ci[WS(rs, 8)] = FNMS(KP773010453, TbN, TbK); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tkb, Tkc, Tkj, Tkk; | ||
|  | 			 Tkb = FMA(KP831469612, Tka, Tk9); | ||
|  | 			 Tkc = Tcx - Tcy; | ||
|  | 			 cr[WS(rs, 35)] = FMS(KP956940335, Tkc, Tkb); | ||
|  | 			 ci[WS(rs, 60)] = FMA(KP956940335, Tkc, Tkb); | ||
|  | 			 Tkj = FNMS(KP831469612, Tkg, Tkf); | ||
|  | 			 Tkk = Tce - Tc7; | ||
|  | 			 cr[WS(rs, 43)] = FMS(KP881921264, Tkk, Tkj); | ||
|  | 			 ci[WS(rs, 52)] = FMA(KP881921264, Tkk, Tkj); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbu, Tbx, TbC, TbJ; | ||
|  | 			 Tbu = FNMS(KP980785280, T99, T80); | ||
|  | 			 Tbx = Tbv + Tbw; | ||
|  | 			 ci[WS(rs, 16)] = FNMS(KP995184726, Tbx, Tbu); | ||
|  | 			 cr[WS(rs, 15)] = FMA(KP995184726, Tbx, Tbu); | ||
|  | 			 TbC = FMA(KP980785280, TbB, Tby); | ||
|  | 			 TbJ = TbF + TbI; | ||
|  | 			 ci[WS(rs, 24)] = FNMS(KP773010453, TbJ, TbC); | ||
|  | 			 cr[WS(rs, 7)] = FMA(KP773010453, TbJ, TbC); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tkd, Tke, Tkh, Tki; | ||
|  | 			 Tkd = FNMS(KP831469612, Tka, Tk9); | ||
|  | 			 Tke = Tcu - Tcr; | ||
|  | 			 cr[WS(rs, 51)] = FMS(KP956940335, Tke, Tkd); | ||
|  | 			 ci[WS(rs, 44)] = FMA(KP956940335, Tke, Tkd); | ||
|  | 			 Tkh = FMA(KP831469612, Tkg, Tkf); | ||
|  | 			 Tki = Tci - Tch; | ||
|  | 			 cr[WS(rs, 59)] = FMS(KP881921264, Tki, Tkh); | ||
|  | 			 ci[WS(rs, 36)] = FMA(KP881921264, Tki, Tkh); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc0, Tcf, Tcw, Tcz; | ||
|  | 			 Tc0 = FMA(KP831469612, TbZ, TbS); | ||
|  | 			 Tcf = Tc7 + Tce; | ||
|  | 			 cr[WS(rs, 27)] = FNMS(KP881921264, Tcf, Tc0); | ||
|  | 			 ci[WS(rs, 4)] = FMA(KP881921264, Tcf, Tc0); | ||
|  | 			 Tcw = FNMS(KP831469612, Tcn, Tck); | ||
|  | 			 Tcz = Tcx + Tcy; | ||
|  | 			 cr[WS(rs, 19)] = FMA(KP956940335, Tcz, Tcw); | ||
|  | 			 ci[WS(rs, 12)] = FNMS(KP956940335, Tcz, Tcw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjX, TjY, Tk5, Tk6; | ||
|  | 			 TjX = FMA(KP980785280, TjW, TjV); | ||
|  | 			 TjY = Tbw - Tbv; | ||
|  | 			 cr[WS(rs, 63)] = FMS(KP995184726, TjY, TjX); | ||
|  | 			 ci[WS(rs, 32)] = FMA(KP995184726, TjY, TjX); | ||
|  | 			 Tk5 = FNMS(KP980785280, Tk2, Tk1); | ||
|  | 			 Tk6 = TbI - TbF; | ||
|  | 			 cr[WS(rs, 55)] = FMS(KP773010453, Tk6, Tk5); | ||
|  | 			 ci[WS(rs, 40)] = FMA(KP773010453, Tk6, Tk5); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcg, Tcj, Tco, Tcv; | ||
|  | 			 Tcg = FNMS(KP831469612, TbZ, TbS); | ||
|  | 			 Tcj = Tch + Tci; | ||
|  | 			 ci[WS(rs, 20)] = FNMS(KP881921264, Tcj, Tcg); | ||
|  | 			 cr[WS(rs, 11)] = FMA(KP881921264, Tcj, Tcg); | ||
|  | 			 Tco = FMA(KP831469612, Tcn, Tck); | ||
|  | 			 Tcv = Tcr + Tcu; | ||
|  | 			 ci[WS(rs, 28)] = FNMS(KP956940335, Tcv, Tco); | ||
|  | 			 cr[WS(rs, 3)] = FMA(KP956940335, Tcv, Tco); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjZ, Tk0, Tk3, Tk4; | ||
|  | 			 TjZ = FNMS(KP980785280, TjW, TjV); | ||
|  | 			 Tk0 = Tbs - Taj; | ||
|  | 			 cr[WS(rs, 47)] = FMS(KP995184726, Tk0, TjZ); | ||
|  | 			 ci[WS(rs, 48)] = FMA(KP995184726, Tk0, TjZ); | ||
|  | 			 Tk3 = FMA(KP980785280, Tk2, Tk1); | ||
|  | 			 Tk4 = TbL - TbM; | ||
|  | 			 cr[WS(rs, 39)] = FMS(KP773010453, Tk4, Tk3); | ||
|  | 			 ci[WS(rs, 56)] = FMA(KP773010453, Tk4, Tk3); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti6, Tif, Ti2, Tim, Ti5; | ||
|  | 		    E Tii; | ||
|  | 		    { | ||
|  | 			 E Thq, Tht, Tj7, Tj8; | ||
|  | 			 Thq = Tm - TN; | ||
|  | 			 Tht = Thr - Ths; | ||
|  | 			 Thu = Thq - Tht; | ||
|  | 			 Ti8 = Thq + Tht; | ||
|  | 			 Tj7 = T1f - T1G; | ||
|  | 			 Tj8 = TiV - TiP; | ||
|  | 			 Tj9 = Tj7 + Tj8; | ||
|  | 			 Tjf = Tj8 - Tj7; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thz, Ti9, ThE, Tia; | ||
|  | 			 { | ||
|  | 			      E Thv, Thy, ThA, ThD; | ||
|  | 			      Thv = T29 - T2A; | ||
|  | 			      Thy = Thw - Thx; | ||
|  | 			      Thz = Thv + Thy; | ||
|  | 			      Ti9 = Thv - Thy; | ||
|  | 			      ThA = T32 - T3t; | ||
|  | 			      ThD = ThB - ThC; | ||
|  | 			      ThE = ThA - ThD; | ||
|  | 			      Tia = ThA + ThD; | ||
|  | 			 } | ||
|  | 			 ThF = Thz + ThE; | ||
|  | 			 Tjg = Tia - Ti9; | ||
|  | 			 Tib = Ti9 + Tia; | ||
|  | 			 Tja = Thz - ThE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThL, Tid, ThQ, Tie; | ||
|  | 			 { | ||
|  | 			      E ThH, ThK, ThO, ThP; | ||
|  | 			      ThH = T3X - T4o; | ||
|  | 			      ThK = ThI - ThJ; | ||
|  | 			      ThL = ThH - ThK; | ||
|  | 			      Tid = ThH + ThK; | ||
|  | 			      ThO = ThM - ThN; | ||
|  | 			      ThP = T4Q - T5h; | ||
|  | 			      ThQ = ThO - ThP; | ||
|  | 			      Tie = ThO + ThP; | ||
|  | 			 } | ||
|  | 			 ThR = FMA(KP414213562, ThQ, ThL); | ||
|  | 			 Til = FMA(KP414213562, Tid, Tie); | ||
|  | 			 Ti6 = FNMS(KP414213562, ThL, ThQ); | ||
|  | 			 Tif = FNMS(KP414213562, Tie, Tid); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThW, Tig, Ti1, Tih; | ||
|  | 			 { | ||
|  | 			      E ThS, ThV, ThZ, Ti0; | ||
|  | 			      ThS = T5K - T6b; | ||
|  | 			      ThV = ThT - ThU; | ||
|  | 			      ThW = ThS - ThV; | ||
|  | 			      Tig = ThS + ThV; | ||
|  | 			      ThZ = ThX - ThY; | ||
|  | 			      Ti0 = T74 - T6D; | ||
|  | 			      Ti1 = ThZ + Ti0; | ||
|  | 			      Tih = Ti0 - ThZ; | ||
|  | 			 } | ||
|  | 			 Ti2 = FNMS(KP414213562, Ti1, ThW); | ||
|  | 			 Tim = FMA(KP414213562, Tig, Tih); | ||
|  | 			 Ti5 = FMA(KP414213562, ThW, Ti1); | ||
|  | 			 Tii = FNMS(KP414213562, Tih, Tig); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThG, Ti3, Tjh, Tji; | ||
|  | 			 ThG = FMA(KP707106781, ThF, Thu); | ||
|  | 			 Ti3 = ThR + Ti2; | ||
|  | 			 ci[WS(rs, 27)] = FNMS(KP923879532, Ti3, ThG); | ||
|  | 			 cr[WS(rs, 4)] = FMA(KP923879532, Ti3, ThG); | ||
|  | 			 Tjh = FMA(KP707106781, Tjg, Tjf); | ||
|  | 			 Tji = Ti6 + Ti5; | ||
|  | 			 cr[WS(rs, 36)] = FMS(KP923879532, Tji, Tjh); | ||
|  | 			 ci[WS(rs, 59)] = FMA(KP923879532, Tji, Tjh); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tjj, Tjk, Ti4, Ti7; | ||
|  | 			 Tjj = FNMS(KP707106781, Tjg, Tjf); | ||
|  | 			 Tjk = Ti2 - ThR; | ||
|  | 			 cr[WS(rs, 52)] = FMS(KP923879532, Tjk, Tjj); | ||
|  | 			 ci[WS(rs, 43)] = FMA(KP923879532, Tjk, Tjj); | ||
|  | 			 Ti4 = FNMS(KP707106781, ThF, Thu); | ||
|  | 			 Ti7 = Ti5 - Ti6; | ||
|  | 			 cr[WS(rs, 20)] = FNMS(KP923879532, Ti7, Ti4); | ||
|  | 			 ci[WS(rs, 11)] = FMA(KP923879532, Ti7, Ti4); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tic, Tij, Tjb, Tjc; | ||
|  | 			 Tic = FMA(KP707106781, Tib, Ti8); | ||
|  | 			 Tij = Tif + Tii; | ||
|  | 			 cr[WS(rs, 28)] = FNMS(KP923879532, Tij, Tic); | ||
|  | 			 ci[WS(rs, 3)] = FMA(KP923879532, Tij, Tic); | ||
|  | 			 Tjb = FMA(KP707106781, Tja, Tj9); | ||
|  | 			 Tjc = Tim - Til; | ||
|  | 			 cr[WS(rs, 60)] = FMS(KP923879532, Tjc, Tjb); | ||
|  | 			 ci[WS(rs, 35)] = FMA(KP923879532, Tjc, Tjb); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tjd, Tje, Tik, Tin; | ||
|  | 			 Tjd = FNMS(KP707106781, Tja, Tj9); | ||
|  | 			 Tje = Tii - Tif; | ||
|  | 			 cr[WS(rs, 44)] = FMS(KP923879532, Tje, Tjd); | ||
|  | 			 ci[WS(rs, 51)] = FMA(KP923879532, Tje, Tjd); | ||
|  | 			 Tik = FNMS(KP707106781, Tib, Ti8); | ||
|  | 			 Tin = Til + Tim; | ||
|  | 			 ci[WS(rs, 19)] = FNMS(KP923879532, Tin, Tik); | ||
|  | 			 cr[WS(rs, 12)] = FMA(KP923879532, Tin, Tik); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th7; | ||
|  | 		    E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th8, Thh, Tgi, TgC; | ||
|  | 		    E Tgm, Tgy; | ||
|  | 		    { | ||
|  | 			 E TeQ, TjB, Tf1, TjC, TeV, Tf0; | ||
|  | 			 TeQ = TeM + TeP; | ||
|  | 			 TjB = Tjm - Tjl; | ||
|  | 			 TeV = TeR - TeU; | ||
|  | 			 Tf0 = TeW + TeZ; | ||
|  | 			 Tf1 = TeV + Tf0; | ||
|  | 			 TjC = Tf0 - TeV; | ||
|  | 			 Tf2 = FNMS(KP707106781, Tf1, TeQ); | ||
|  | 			 TjJ = FNMS(KP707106781, TjC, TjB); | ||
|  | 			 Tgo = FMA(KP707106781, Tf1, TeQ); | ||
|  | 			 TjD = FMA(KP707106781, TjC, TjB); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgE, Tjn, TgH, Tjo, TgF, TgG; | ||
|  | 			 TgE = TeM - TeP; | ||
|  | 			 Tjn = Tjl + Tjm; | ||
|  | 			 TgF = TeR + TeU; | ||
|  | 			 TgG = TeW - TeZ; | ||
|  | 			 TgH = TgF + TgG; | ||
|  | 			 Tjo = TgF - TgG; | ||
|  | 			 TgI = FMA(KP707106781, TgH, TgE); | ||
|  | 			 Tjv = FNMS(KP707106781, Tjo, Tjn); | ||
|  | 			 Tha = FNMS(KP707106781, TgH, TgE); | ||
|  | 			 Tjp = FMA(KP707106781, Tjo, Tjn); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tfd, Tgp, Tfo, Tgq; | ||
|  | 			 { | ||
|  | 			      E Tf7, Tfc, Tfi, Tfn; | ||
|  | 			      Tf7 = Tf5 + Tf6; | ||
|  | 			      Tfc = Tf8 + Tfb; | ||
|  | 			      Tfd = FMA(KP414213562, Tfc, Tf7); | ||
|  | 			      Tgp = FNMS(KP414213562, Tf7, Tfc); | ||
|  | 			      Tfi = Tfg + Tfh; | ||
|  | 			      Tfn = Tfj + Tfm; | ||
|  | 			      Tfo = FNMS(KP414213562, Tfn, Tfi); | ||
|  | 			      Tgq = FMA(KP414213562, Tfi, Tfn); | ||
|  | 			 } | ||
|  | 			 Tfp = Tfd - Tfo; | ||
|  | 			 Tjw = Tgq - Tgp; | ||
|  | 			 Tgr = Tgp + Tgq; | ||
|  | 			 Tjq = Tfd + Tfo; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th0, Thi, Th3, Thj; | ||
|  | 			 { | ||
|  | 			      E TgY, TgZ, Th1, Th2; | ||
|  | 			      TgY = TfS - TfV; | ||
|  | 			      TgZ = Tgf + Tge; | ||
|  | 			      Th0 = FMA(KP707106781, TgZ, TgY); | ||
|  | 			      Thi = FNMS(KP707106781, TgZ, TgY); | ||
|  | 			      Th1 = Tgc + Tg9; | ||
|  | 			      Th2 = Tg6 - Tg1; | ||
|  | 			      Th3 = FMA(KP707106781, Th2, Th1); | ||
|  | 			      Thj = FNMS(KP707106781, Th2, Th1); | ||
|  | 			 } | ||
|  | 			 Th4 = FNMS(KP198912367, Th3, Th0); | ||
|  | 			 Tho = FNMS(KP668178637, Thi, Thj); | ||
|  | 			 Th7 = FMA(KP198912367, Th0, Th3); | ||
|  | 			 Thk = FMA(KP668178637, Thj, Thi); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfH, Tgt, TfQ, Tgu; | ||
|  | 			 { | ||
|  | 			      E Tfv, TfG, TfM, TfP; | ||
|  | 			      Tfv = Tfr + Tfu; | ||
|  | 			      TfG = TfA + TfF; | ||
|  | 			      TfH = FNMS(KP707106781, TfG, Tfv); | ||
|  | 			      Tgt = FMA(KP707106781, TfG, Tfv); | ||
|  | 			      TfM = TfK + TfL; | ||
|  | 			      TfP = TfN + TfO; | ||
|  | 			      TfQ = FNMS(KP707106781, TfP, TfM); | ||
|  | 			      Tgu = FMA(KP707106781, TfP, TfM); | ||
|  | 			 } | ||
|  | 			 TfR = FMA(KP668178637, TfQ, TfH); | ||
|  | 			 TgB = FMA(KP198912367, Tgt, Tgu); | ||
|  | 			 Tgl = FNMS(KP668178637, TfH, TfQ); | ||
|  | 			 Tgv = FNMS(KP198912367, Tgu, Tgt); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgL, Thc, TgO, Thb; | ||
|  | 			 { | ||
|  | 			      E TgJ, TgK, TgM, TgN; | ||
|  | 			      TgJ = Tf8 - Tfb; | ||
|  | 			      TgK = Tf5 - Tf6; | ||
|  | 			      TgL = FMA(KP414213562, TgK, TgJ); | ||
|  | 			      Thc = FNMS(KP414213562, TgJ, TgK); | ||
|  | 			      TgM = Tfj - Tfm; | ||
|  | 			      TgN = Tfg - Tfh; | ||
|  | 			      TgO = FNMS(KP414213562, TgN, TgM); | ||
|  | 			      Thb = FMA(KP414213562, TgM, TgN); | ||
|  | 			 } | ||
|  | 			 TgP = TgL + TgO; | ||
|  | 			 TjK = TgL - TgO; | ||
|  | 			 Thd = Thb - Thc; | ||
|  | 			 TjE = Thc + Thb; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgT, Thf, TgW, Thg; | ||
|  | 			 { | ||
|  | 			      E TgR, TgS, TgU, TgV; | ||
|  | 			      TgR = Tfr - Tfu; | ||
|  | 			      TgS = TfN - TfO; | ||
|  | 			      TgT = FMA(KP707106781, TgS, TgR); | ||
|  | 			      Thf = FNMS(KP707106781, TgS, TgR); | ||
|  | 			      TgU = TfK - TfL; | ||
|  | 			      TgV = TfF - TfA; | ||
|  | 			      TgW = FMA(KP707106781, TgV, TgU); | ||
|  | 			      Thg = FNMS(KP707106781, TgV, TgU); | ||
|  | 			 } | ||
|  | 			 TgX = FMA(KP198912367, TgW, TgT); | ||
|  | 			 Thn = FMA(KP668178637, Thf, Thg); | ||
|  | 			 Th8 = FNMS(KP198912367, TgT, TgW); | ||
|  | 			 Thh = FNMS(KP668178637, Thg, Thf); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tg8, Tgw, Tgh, Tgx; | ||
|  | 			 { | ||
|  | 			      E TfW, Tg7, Tgd, Tgg; | ||
|  | 			      TfW = TfS + TfV; | ||
|  | 			      Tg7 = Tg1 + Tg6; | ||
|  | 			      Tg8 = FNMS(KP707106781, Tg7, TfW); | ||
|  | 			      Tgw = FMA(KP707106781, Tg7, TfW); | ||
|  | 			      Tgd = Tg9 - Tgc; | ||
|  | 			      Tgg = Tge - Tgf; | ||
|  | 			      Tgh = FNMS(KP707106781, Tgg, Tgd); | ||
|  | 			      Tgx = FMA(KP707106781, Tgg, Tgd); | ||
|  | 			 } | ||
|  | 			 Tgi = FMA(KP668178637, Tgh, Tg8); | ||
|  | 			 TgC = FMA(KP198912367, Tgw, Tgx); | ||
|  | 			 Tgm = FNMS(KP668178637, Tg8, Tgh); | ||
|  | 			 Tgy = FNMS(KP198912367, Tgx, Tgw); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tfq, Tgj, TgA, TgD; | ||
|  | 			 Tfq = FMA(KP923879532, Tfp, Tf2); | ||
|  | 			 Tgj = TfR + Tgi; | ||
|  | 			 ci[WS(rs, 25)] = FNMS(KP831469612, Tgj, Tfq); | ||
|  | 			 cr[WS(rs, 6)] = FMA(KP831469612, Tgj, Tfq); | ||
|  | 			 TgA = FNMS(KP923879532, Tgr, Tgo); | ||
|  | 			 TgD = TgB + TgC; | ||
|  | 			 ci[WS(rs, 17)] = FNMS(KP980785280, TgD, TgA); | ||
|  | 			 cr[WS(rs, 14)] = FMA(KP980785280, TgD, TgA); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjF, TjG, TjN, TjO; | ||
|  | 			 TjF = FMA(KP923879532, TjE, TjD); | ||
|  | 			 TjG = Th8 + Th7; | ||
|  | 			 cr[WS(rs, 34)] = FMS(KP980785280, TjG, TjF); | ||
|  | 			 ci[WS(rs, 61)] = FMA(KP980785280, TjG, TjF); | ||
|  | 			 TjN = FNMS(KP923879532, TjK, TjJ); | ||
|  | 			 TjO = Thk - Thh; | ||
|  | 			 cr[WS(rs, 42)] = FMS(KP831469612, TjO, TjN); | ||
|  | 			 ci[WS(rs, 53)] = FMA(KP831469612, TjO, TjN); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgk, Tgn, Tgs, Tgz; | ||
|  | 			 Tgk = FNMS(KP923879532, Tfp, Tf2); | ||
|  | 			 Tgn = Tgl + Tgm; | ||
|  | 			 cr[WS(rs, 22)] = FMA(KP831469612, Tgn, Tgk); | ||
|  | 			 ci[WS(rs, 9)] = FNMS(KP831469612, Tgn, Tgk); | ||
|  | 			 Tgs = FMA(KP923879532, Tgr, Tgo); | ||
|  | 			 Tgz = Tgv + Tgy; | ||
|  | 			 cr[WS(rs, 30)] = FNMS(KP980785280, Tgz, Tgs); | ||
|  | 			 ci[WS(rs, 1)] = FMA(KP980785280, Tgz, Tgs); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TjH, TjI, TjL, TjM; | ||
|  | 			 TjH = FNMS(KP923879532, TjE, TjD); | ||
|  | 			 TjI = Th4 - TgX; | ||
|  | 			 cr[WS(rs, 50)] = FMS(KP980785280, TjI, TjH); | ||
|  | 			 ci[WS(rs, 45)] = FMA(KP980785280, TjI, TjH); | ||
|  | 			 TjL = FMA(KP923879532, TjK, TjJ); | ||
|  | 			 TjM = Thn + Tho; | ||
|  | 			 cr[WS(rs, 58)] = -(FMA(KP831469612, TjM, TjL)); | ||
|  | 			 ci[WS(rs, 37)] = FNMS(KP831469612, TjM, TjL); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgQ, Th5, Thm, Thp; | ||
|  | 			 TgQ = FMA(KP923879532, TgP, TgI); | ||
|  | 			 Th5 = TgX + Th4; | ||
|  | 			 ci[WS(rs, 29)] = FNMS(KP980785280, Th5, TgQ); | ||
|  | 			 cr[WS(rs, 2)] = FMA(KP980785280, Th5, TgQ); | ||
|  | 			 Thm = FNMS(KP923879532, Thd, Tha); | ||
|  | 			 Thp = Thn - Tho; | ||
|  | 			 ci[WS(rs, 21)] = FNMS(KP831469612, Thp, Thm); | ||
|  | 			 cr[WS(rs, 10)] = FMA(KP831469612, Thp, Thm); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tjr, Tjs, Tjz, TjA; | ||
|  | 			 Tjr = FMA(KP923879532, Tjq, Tjp); | ||
|  | 			 Tjs = TgC - TgB; | ||
|  | 			 cr[WS(rs, 62)] = FMS(KP980785280, Tjs, Tjr); | ||
|  | 			 ci[WS(rs, 33)] = FMA(KP980785280, Tjs, Tjr); | ||
|  | 			 Tjz = FNMS(KP923879532, Tjw, Tjv); | ||
|  | 			 TjA = Tgi - TfR; | ||
|  | 			 cr[WS(rs, 54)] = FMS(KP831469612, TjA, Tjz); | ||
|  | 			 ci[WS(rs, 41)] = FMA(KP831469612, TjA, Tjz); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th6, Th9, The, Thl; | ||
|  | 			 Th6 = FNMS(KP923879532, TgP, TgI); | ||
|  | 			 Th9 = Th7 - Th8; | ||
|  | 			 cr[WS(rs, 18)] = FNMS(KP980785280, Th9, Th6); | ||
|  | 			 ci[WS(rs, 13)] = FMA(KP980785280, Th9, Th6); | ||
|  | 			 The = FMA(KP923879532, Thd, Tha); | ||
|  | 			 Thl = Thh + Thk; | ||
|  | 			 cr[WS(rs, 26)] = FNMS(KP831469612, Thl, The); | ||
|  | 			 ci[WS(rs, 5)] = FMA(KP831469612, Thl, The); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tjt, Tju, Tjx, Tjy; | ||
|  | 			 Tjt = FNMS(KP923879532, Tjq, Tjp); | ||
|  | 			 Tju = Tgy - Tgv; | ||
|  | 			 cr[WS(rs, 46)] = FMS(KP980785280, Tju, Tjt); | ||
|  | 			 ci[WS(rs, 49)] = FMA(KP980785280, Tju, Tjt); | ||
|  | 			 Tjx = FMA(KP923879532, Tjw, Tjv); | ||
|  | 			 Tjy = Tgl - Tgm; | ||
|  | 			 cr[WS(rs, 38)] = FMS(KP831469612, Tjy, Tjx); | ||
|  | 			 ci[WS(rs, 57)] = FMA(KP831469612, Tjy, Tjx); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Td1, Tkw, TdN, Tkq, Tdl, TdX, TdI, TdR, Teq, TeK, Tet, TeG, Tej, TeJ, Teu; | ||
|  | 		    E TeD, Teb, TkK, Tez, TkE, TdE, TdY, TdH, TdU, TcM, TkD, TkJ, TdK, Te4, Tkp; | ||
|  | 		    E Tkv, Tew; | ||
|  | 		    { | ||
|  | 			 E TcT, TdM, Td0, TdL; | ||
|  | 			 { | ||
|  | 			      E TcP, TcS, TcW, TcZ; | ||
|  | 			      TcP = FMA(KP707106781, TcO, TcN); | ||
|  | 			      TcS = FMA(KP707106781, TcR, TcQ); | ||
|  | 			      TcT = FMA(KP198912367, TcS, TcP); | ||
|  | 			      TdM = FNMS(KP198912367, TcP, TcS); | ||
|  | 			      TcW = FMA(KP707106781, TcV, TcU); | ||
|  | 			      TcZ = FMA(KP707106781, TcY, TcX); | ||
|  | 			      Td0 = FNMS(KP198912367, TcZ, TcW); | ||
|  | 			      TdL = FMA(KP198912367, TcW, TcZ); | ||
|  | 			 } | ||
|  | 			 Td1 = TcT + Td0; | ||
|  | 			 Tkw = TcT - Td0; | ||
|  | 			 TdN = TdL - TdM; | ||
|  | 			 Tkq = TdM + TdL; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdd, TdP, Tdk, TdQ; | ||
|  | 			 { | ||
|  | 			      E Td5, Tdc, Tdg, Tdj; | ||
|  | 			      Td5 = FMA(KP707106781, Td4, Td3); | ||
|  | 			      Tdc = Td8 + Tdb; | ||
|  | 			      Tdd = FMA(KP923879532, Tdc, Td5); | ||
|  | 			      TdP = FNMS(KP923879532, Tdc, Td5); | ||
|  | 			      Tdg = FMA(KP707106781, Tdf, Tde); | ||
|  | 			      Tdj = Tdh + Tdi; | ||
|  | 			      Tdk = FMA(KP923879532, Tdj, Tdg); | ||
|  | 			      TdQ = FNMS(KP923879532, Tdj, Tdg); | ||
|  | 			 } | ||
|  | 			 Tdl = FMA(KP098491403, Tdk, Tdd); | ||
|  | 			 TdX = FMA(KP820678790, TdP, TdQ); | ||
|  | 			 TdI = FNMS(KP098491403, Tdd, Tdk); | ||
|  | 			 TdR = FNMS(KP820678790, TdQ, TdP); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tem, TeE, Tep, TeF; | ||
|  | 			 { | ||
|  | 			      E Tek, Tel, Ten, Teo; | ||
|  | 			      Tek = FNMS(KP707106781, Tdn, Tdm); | ||
|  | 			      Tel = TdB - TdA; | ||
|  | 			      Tem = FNMS(KP923879532, Tel, Tek); | ||
|  | 			      TeE = FMA(KP923879532, Tel, Tek); | ||
|  | 			      Ten = FNMS(KP707106781, Tdy, Tdx); | ||
|  | 			      Teo = Tdu - Tdr; | ||
|  | 			      Tep = FMA(KP923879532, Teo, Ten); | ||
|  | 			      TeF = FNMS(KP923879532, Teo, Ten); | ||
|  | 			 } | ||
|  | 			 Teq = FNMS(KP534511135, Tep, Tem); | ||
|  | 			 TeK = FNMS(KP303346683, TeE, TeF); | ||
|  | 			 Tet = FMA(KP534511135, Tem, Tep); | ||
|  | 			 TeG = FMA(KP303346683, TeF, TeE); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tef, TeB, Tei, TeC; | ||
|  | 			 { | ||
|  | 			      E Ted, Tee, Teg, Teh; | ||
|  | 			      Ted = FNMS(KP707106781, Td4, Td3); | ||
|  | 			      Tee = Tdi - Tdh; | ||
|  | 			      Tef = FNMS(KP923879532, Tee, Ted); | ||
|  | 			      TeB = FMA(KP923879532, Tee, Ted); | ||
|  | 			      Teg = FNMS(KP707106781, Tdf, Tde); | ||
|  | 			      Teh = Td8 - Tdb; | ||
|  | 			      Tei = FNMS(KP923879532, Teh, Teg); | ||
|  | 			      TeC = FMA(KP923879532, Teh, Teg); | ||
|  | 			 } | ||
|  | 			 Tej = FMA(KP534511135, Tei, Tef); | ||
|  | 			 TeJ = FMA(KP303346683, TeB, TeC); | ||
|  | 			 Teu = FNMS(KP534511135, Tef, Tei); | ||
|  | 			 TeD = FNMS(KP303346683, TeC, TeB); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te7, Tex, Tea, Tey; | ||
|  | 			 { | ||
|  | 			      E Te5, Te6, Te8, Te9; | ||
|  | 			      Te5 = FNMS(KP707106781, TcR, TcQ); | ||
|  | 			      Te6 = FNMS(KP707106781, TcO, TcN); | ||
|  | 			      Te7 = FMA(KP668178637, Te6, Te5); | ||
|  | 			      Tex = FNMS(KP668178637, Te5, Te6); | ||
|  | 			      Te8 = FNMS(KP707106781, TcY, TcX); | ||
|  | 			      Te9 = FNMS(KP707106781, TcV, TcU); | ||
|  | 			      Tea = FNMS(KP668178637, Te9, Te8); | ||
|  | 			      Tey = FMA(KP668178637, Te8, Te9); | ||
|  | 			 } | ||
|  | 			 Teb = Te7 - Tea; | ||
|  | 			 TkK = Tey - Tex; | ||
|  | 			 Tez = Tex + Tey; | ||
|  | 			 TkE = Te7 + Tea; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdw, TdS, TdD, TdT; | ||
|  | 			 { | ||
|  | 			      E Tdo, Tdv, Tdz, TdC; | ||
|  | 			      Tdo = FMA(KP707106781, Tdn, Tdm); | ||
|  | 			      Tdv = Tdr + Tdu; | ||
|  | 			      Tdw = FMA(KP923879532, Tdv, Tdo); | ||
|  | 			      TdS = FNMS(KP923879532, Tdv, Tdo); | ||
|  | 			      Tdz = FMA(KP707106781, Tdy, Tdx); | ||
|  | 			      TdC = TdA + TdB; | ||
|  | 			      TdD = FMA(KP923879532, TdC, Tdz); | ||
|  | 			      TdT = FNMS(KP923879532, TdC, Tdz); | ||
|  | 			 } | ||
|  | 			 TdE = FNMS(KP098491403, TdD, Tdw); | ||
|  | 			 TdY = FNMS(KP820678790, TdS, TdT); | ||
|  | 			 TdH = FMA(KP098491403, Tdw, TdD); | ||
|  | 			 TdU = FMA(KP820678790, TdT, TdS); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TcE, Te0, Tkn, TkB, TcL, TkC, Te3, Tko, TcD, Tkm; | ||
|  | 			 TcD = TcB + TcC; | ||
|  | 			 TcE = FMA(KP707106781, TcD, TcA); | ||
|  | 			 Te0 = FNMS(KP707106781, TcD, TcA); | ||
|  | 			 Tkm = T7s - T7l; | ||
|  | 			 Tkn = FMA(KP707106781, Tkm, Tkl); | ||
|  | 			 TkB = FNMS(KP707106781, Tkm, Tkl); | ||
|  | 			 { | ||
|  | 			      E TcH, TcK, Te1, Te2; | ||
|  | 			      TcH = FMA(KP414213562, TcG, TcF); | ||
|  | 			      TcK = FNMS(KP414213562, TcJ, TcI); | ||
|  | 			      TcL = TcH + TcK; | ||
|  | 			      TkC = TcH - TcK; | ||
|  | 			      Te1 = FMA(KP414213562, TcI, TcJ); | ||
|  | 			      Te2 = FNMS(KP414213562, TcF, TcG); | ||
|  | 			      Te3 = Te1 - Te2; | ||
|  | 			      Tko = Te2 + Te1; | ||
|  | 			 } | ||
|  | 			 TcM = FMA(KP923879532, TcL, TcE); | ||
|  | 			 TkD = FMA(KP923879532, TkC, TkB); | ||
|  | 			 TkJ = FNMS(KP923879532, TkC, TkB); | ||
|  | 			 TdK = FNMS(KP923879532, TcL, TcE); | ||
|  | 			 Te4 = FNMS(KP923879532, Te3, Te0); | ||
|  | 			 Tkp = FMA(KP923879532, Tko, Tkn); | ||
|  | 			 Tkv = FNMS(KP923879532, Tko, Tkn); | ||
|  | 			 Tew = FMA(KP923879532, Te3, Te0); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td2, TdF, TdW, TdZ; | ||
|  | 			 Td2 = FMA(KP980785280, Td1, TcM); | ||
|  | 			 TdF = Tdl + TdE; | ||
|  | 			 ci[WS(rs, 30)] = FNMS(KP995184726, TdF, Td2); | ||
|  | 			 cr[WS(rs, 1)] = FMA(KP995184726, TdF, Td2); | ||
|  | 			 TdW = FNMS(KP980785280, TdN, TdK); | ||
|  | 			 TdZ = TdX - TdY; | ||
|  | 			 ci[WS(rs, 22)] = FNMS(KP773010453, TdZ, TdW); | ||
|  | 			 cr[WS(rs, 9)] = FMA(KP773010453, TdZ, TdW); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TkF, TkG, TkN, TkO; | ||
|  | 			 TkF = FMA(KP831469612, TkE, TkD); | ||
|  | 			 TkG = TeJ + TeK; | ||
|  | 			 cr[WS(rs, 61)] = -(FMA(KP956940335, TkG, TkF)); | ||
|  | 			 ci[WS(rs, 34)] = FNMS(KP956940335, TkG, TkF); | ||
|  | 			 TkN = FNMS(KP831469612, TkK, TkJ); | ||
|  | 			 TkO = Teq - Tej; | ||
|  | 			 cr[WS(rs, 53)] = FMS(KP881921264, TkO, TkN); | ||
|  | 			 ci[WS(rs, 42)] = FMA(KP881921264, TkO, TkN); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdG, TdJ, TdO, TdV; | ||
|  | 			 TdG = FNMS(KP980785280, Td1, TcM); | ||
|  | 			 TdJ = TdH - TdI; | ||
|  | 			 cr[WS(rs, 17)] = FNMS(KP995184726, TdJ, TdG); | ||
|  | 			 ci[WS(rs, 14)] = FMA(KP995184726, TdJ, TdG); | ||
|  | 			 TdO = FMA(KP980785280, TdN, TdK); | ||
|  | 			 TdV = TdR + TdU; | ||
|  | 			 cr[WS(rs, 25)] = FNMS(KP773010453, TdV, TdO); | ||
|  | 			 ci[WS(rs, 6)] = FMA(KP773010453, TdV, TdO); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TkH, TkI, TkL, TkM; | ||
|  | 			 TkH = FNMS(KP831469612, TkE, TkD); | ||
|  | 			 TkI = TeG - TeD; | ||
|  | 			 cr[WS(rs, 45)] = FMS(KP956940335, TkI, TkH); | ||
|  | 			 ci[WS(rs, 50)] = FMA(KP956940335, TkI, TkH); | ||
|  | 			 TkL = FMA(KP831469612, TkK, TkJ); | ||
|  | 			 TkM = Teu + Tet; | ||
|  | 			 cr[WS(rs, 37)] = FMS(KP881921264, TkM, TkL); | ||
|  | 			 ci[WS(rs, 58)] = FMA(KP881921264, TkM, TkL); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tec, Ter, TeI, TeL; | ||
|  | 			 Tec = FMA(KP831469612, Teb, Te4); | ||
|  | 			 Ter = Tej + Teq; | ||
|  | 			 ci[WS(rs, 26)] = FNMS(KP881921264, Ter, Tec); | ||
|  | 			 cr[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); | ||
|  | 			 TeI = FNMS(KP831469612, Tez, Tew); | ||
|  | 			 TeL = TeJ - TeK; | ||
|  | 			 ci[WS(rs, 18)] = FNMS(KP956940335, TeL, TeI); | ||
|  | 			 cr[WS(rs, 13)] = FMA(KP956940335, TeL, TeI); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tkr, Tks, Tkz, TkA; | ||
|  | 			 Tkr = FMA(KP980785280, Tkq, Tkp); | ||
|  | 			 Tks = TdI + TdH; | ||
|  | 			 cr[WS(rs, 33)] = FMS(KP995184726, Tks, Tkr); | ||
|  | 			 ci[WS(rs, 62)] = FMA(KP995184726, Tks, Tkr); | ||
|  | 			 Tkz = FNMS(KP980785280, Tkw, Tkv); | ||
|  | 			 TkA = TdU - TdR; | ||
|  | 			 cr[WS(rs, 41)] = FMS(KP773010453, TkA, Tkz); | ||
|  | 			 ci[WS(rs, 54)] = FMA(KP773010453, TkA, Tkz); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tes, Tev, TeA, TeH; | ||
|  | 			 Tes = FNMS(KP831469612, Teb, Te4); | ||
|  | 			 Tev = Tet - Teu; | ||
|  | 			 cr[WS(rs, 21)] = FNMS(KP881921264, Tev, Tes); | ||
|  | 			 ci[WS(rs, 10)] = FMA(KP881921264, Tev, Tes); | ||
|  | 			 TeA = FMA(KP831469612, Tez, Tew); | ||
|  | 			 TeH = TeD + TeG; | ||
|  | 			 cr[WS(rs, 29)] = FNMS(KP956940335, TeH, TeA); | ||
|  | 			 ci[WS(rs, 2)] = FMA(KP956940335, TeH, TeA); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tkt, Tku, Tkx, Tky; | ||
|  | 			 Tkt = FNMS(KP980785280, Tkq, Tkp); | ||
|  | 			 Tku = TdE - Tdl; | ||
|  | 			 cr[WS(rs, 49)] = FMS(KP995184726, Tku, Tkt); | ||
|  | 			 ci[WS(rs, 46)] = FMA(KP995184726, Tku, Tkt); | ||
|  | 			 Tkx = FMA(KP980785280, Tkw, Tkv); | ||
|  | 			 Tky = TdX + TdY; | ||
|  | 			 cr[WS(rs, 57)] = -(FMA(KP773010453, Tky, Tkx)); | ||
|  | 			 ci[WS(rs, 38)] = FNMS(KP773010453, Tky, Tkx); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 64 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, { 520, 126, 518, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hf_64) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hf_64, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 1038 FP additions, 500 FP multiplications, | ||
|  |  * (or, 808 additions, 270 multiplications, 230 fused multiply/add), | ||
|  |  * 176 stack variables, 15 constants, and 256 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hf.h"
 | ||
|  | 
 | ||
|  | static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP290284677, +0.290284677254462367636192375817395274691476278); | ||
|  |      DK(KP956940335, +0.956940335732208864935797886980269969482849206); | ||
|  |      DK(KP881921264, +0.881921264348355029712756863660388349508442621); | ||
|  |      DK(KP471396736, +0.471396736825997648556387625905254377657460319); | ||
|  |      DK(KP555570233, +0.555570233019602224742830813948532874374937191); | ||
|  |      DK(KP831469612, +0.831469612302545237078788377617905756738560812); | ||
|  |      DK(KP098017140, +0.098017140329560601994195563888641845861136673); | ||
|  |      DK(KP995184726, +0.995184726672196886244836953109479921575474869); | ||
|  |      DK(KP773010453, +0.773010453362736960810906609758469800971041293); | ||
|  |      DK(KP634393284, +0.634393284163645498215171613225493370675687095); | ||
|  |      DK(KP980785280, +0.980785280403230449126182236134239036973933731); | ||
|  |      DK(KP195090322, +0.195090322016128267848284868477022240927691618); | ||
|  |      DK(KP382683432, +0.382683432365089771728459984030398866761344562); | ||
|  |      DK(KP923879532, +0.923879532511286756128183189396788286822416626); | ||
|  |      DK(KP707106781, +0.707106781186547524400844362104849039284835938); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | ||
|  | 	       E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, Tim, TaC; | ||
|  | 	       E ThQ, T14, Tfr, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfq, T6J, T9P, TaJ, Tc1; | ||
|  | 	       E TcZ, TeF, T1Q, T2d, Tfu, Tfv, Tfw, Tfx, T6Q, TaM, Tdb, TeI, T71, TaQ, T7a; | ||
|  | 	       E TaN, Td6, TeJ, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeL; | ||
|  | 	       E T7s, TaU, T7B, TaX, Tdh, TeM, T7y, TaT, T5j, TfR, Tec, TeX, TfY, Tgy, T8D; | ||
|  | 	       E Tbl, T8O, Tbx, T9l, Tbm, TdV, Tf0, T9i, Tbw, T3M, TfL, TdL, TeT, TfI, Tgt; | ||
|  | 	       E T7K, Tbd, T7V, Tb3, T8s, Tbe, Tdu, TeQ, T8p, Tb2, T4x, TfJ, TdE, TdM, TfO; | ||
|  | 	       E Tgu, T87, T8u, T8i, T8v, Tba, Tbh, Tdz, TdN, Tb7, Tbg, T64, TfZ, Te5, Ted; | ||
|  | 	       E TfU, Tgz, T90, T9n, T9b, T9o, Tbt, TbA, Te0, Tee, Tbq, Tbz; | ||
|  | 	       { | ||
|  | 		    E T1, TgR, T6, TgQ, Tc, T68, Th, T69; | ||
|  | 		    T1 = cr[0]; | ||
|  | 		    TgR = ci[0]; | ||
|  | 		    { | ||
|  | 			 E T3, T5, T2, T4; | ||
|  | 			 T3 = cr[WS(rs, 32)]; | ||
|  | 			 T5 = ci[WS(rs, 32)]; | ||
|  | 			 T2 = W[62]; | ||
|  | 			 T4 = W[63]; | ||
|  | 			 T6 = FMA(T2, T3, T4 * T5); | ||
|  | 			 TgQ = FNMS(T4, T3, T2 * T5); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9, Tb, T8, Ta; | ||
|  | 			 T9 = cr[WS(rs, 16)]; | ||
|  | 			 Tb = ci[WS(rs, 16)]; | ||
|  | 			 T8 = W[30]; | ||
|  | 			 Ta = W[31]; | ||
|  | 			 Tc = FMA(T8, T9, Ta * Tb); | ||
|  | 			 T68 = FNMS(Ta, T9, T8 * Tb); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te, Tg, Td, Tf; | ||
|  | 			 Te = cr[WS(rs, 48)]; | ||
|  | 			 Tg = ci[WS(rs, 48)]; | ||
|  | 			 Td = W[94]; | ||
|  | 			 Tf = W[95]; | ||
|  | 			 Th = FMA(Td, Te, Tf * Tg); | ||
|  | 			 T69 = FNMS(Tf, Te, Td * Tg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7, Ti, ThR, ThS; | ||
|  | 			 T7 = T1 + T6; | ||
|  | 			 Ti = Tc + Th; | ||
|  | 			 Tj = T7 + Ti; | ||
|  | 			 TcL = T7 - Ti; | ||
|  | 			 ThR = Tc - Th; | ||
|  | 			 ThS = TgR - TgQ; | ||
|  | 			 ThT = ThR + ThS; | ||
|  | 			 Tin = ThS - ThR; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T67, T6a, TgP, TgS; | ||
|  | 			 T67 = T1 - T6; | ||
|  | 			 T6a = T68 - T69; | ||
|  | 			 T6b = T67 - T6a; | ||
|  | 			 Taz = T67 + T6a; | ||
|  | 			 TgP = T68 + T69; | ||
|  | 			 TgS = TgQ + TgR; | ||
|  | 			 TgT = TgP + TgS; | ||
|  | 			 Thn = TgS - TgP; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E To, T6d, Tt, T6e, T6c, T6f, Tz, T6i, TE, T6j, T6h, T6k; | ||
|  | 		    { | ||
|  | 			 E Tl, Tn, Tk, Tm; | ||
|  | 			 Tl = cr[WS(rs, 8)]; | ||
|  | 			 Tn = ci[WS(rs, 8)]; | ||
|  | 			 Tk = W[14]; | ||
|  | 			 Tm = W[15]; | ||
|  | 			 To = FMA(Tk, Tl, Tm * Tn); | ||
|  | 			 T6d = FNMS(Tm, Tl, Tk * Tn); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tq, Ts, Tp, Tr; | ||
|  | 			 Tq = cr[WS(rs, 40)]; | ||
|  | 			 Ts = ci[WS(rs, 40)]; | ||
|  | 			 Tp = W[78]; | ||
|  | 			 Tr = W[79]; | ||
|  | 			 Tt = FMA(Tp, Tq, Tr * Ts); | ||
|  | 			 T6e = FNMS(Tr, Tq, Tp * Ts); | ||
|  | 		    } | ||
|  | 		    T6c = To - Tt; | ||
|  | 		    T6f = T6d - T6e; | ||
|  | 		    { | ||
|  | 			 E Tw, Ty, Tv, Tx; | ||
|  | 			 Tw = cr[WS(rs, 56)]; | ||
|  | 			 Ty = ci[WS(rs, 56)]; | ||
|  | 			 Tv = W[110]; | ||
|  | 			 Tx = W[111]; | ||
|  | 			 Tz = FMA(Tv, Tw, Tx * Ty); | ||
|  | 			 T6i = FNMS(Tx, Tw, Tv * Ty); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TB, TD, TA, TC; | ||
|  | 			 TB = cr[WS(rs, 24)]; | ||
|  | 			 TD = ci[WS(rs, 24)]; | ||
|  | 			 TA = W[46]; | ||
|  | 			 TC = W[47]; | ||
|  | 			 TE = FMA(TA, TB, TC * TD); | ||
|  | 			 T6j = FNMS(TC, TB, TA * TD); | ||
|  | 		    } | ||
|  | 		    T6h = Tz - TE; | ||
|  | 		    T6k = T6i - T6j; | ||
|  | 		    { | ||
|  | 			 E Tu, TF, TcM, TcN; | ||
|  | 			 Tu = To + Tt; | ||
|  | 			 TF = Tz + TE; | ||
|  | 			 TG = Tu + TF; | ||
|  | 			 Thm = Tu - TF; | ||
|  | 			 TcM = T6i + T6j; | ||
|  | 			 TcN = T6d + T6e; | ||
|  | 			 TcO = TcM - TcN; | ||
|  | 			 TgO = TcN + TcM; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6g, T6l, TaA, TaB; | ||
|  | 			 T6g = T6c - T6f; | ||
|  | 			 T6l = T6h + T6k; | ||
|  | 			 T6m = KP707106781 * (T6g + T6l); | ||
|  | 			 Tim = KP707106781 * (T6l - T6g); | ||
|  | 			 TaA = T6c + T6f; | ||
|  | 			 TaB = T6h - T6k; | ||
|  | 			 TaC = KP707106781 * (TaA + TaB); | ||
|  | 			 ThQ = KP707106781 * (TaA - TaB); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TS, TcR, T6o, T6v, T13, TcS, T6r, T6w, T6s, T6x; | ||
|  | 		    { | ||
|  | 			 E TM, T6t, TR, T6u; | ||
|  | 			 { | ||
|  | 			      E TJ, TL, TI, TK; | ||
|  | 			      TJ = cr[WS(rs, 4)]; | ||
|  | 			      TL = ci[WS(rs, 4)]; | ||
|  | 			      TI = W[6]; | ||
|  | 			      TK = W[7]; | ||
|  | 			      TM = FMA(TI, TJ, TK * TL); | ||
|  | 			      T6t = FNMS(TK, TJ, TI * TL); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TO, TQ, TN, TP; | ||
|  | 			      TO = cr[WS(rs, 36)]; | ||
|  | 			      TQ = ci[WS(rs, 36)]; | ||
|  | 			      TN = W[70]; | ||
|  | 			      TP = W[71]; | ||
|  | 			      TR = FMA(TN, TO, TP * TQ); | ||
|  | 			      T6u = FNMS(TP, TO, TN * TQ); | ||
|  | 			 } | ||
|  | 			 TS = TM + TR; | ||
|  | 			 TcR = T6t + T6u; | ||
|  | 			 T6o = TM - TR; | ||
|  | 			 T6v = T6t - T6u; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TX, T6p, T12, T6q; | ||
|  | 			 { | ||
|  | 			      E TU, TW, TT, TV; | ||
|  | 			      TU = cr[WS(rs, 20)]; | ||
|  | 			      TW = ci[WS(rs, 20)]; | ||
|  | 			      TT = W[38]; | ||
|  | 			      TV = W[39]; | ||
|  | 			      TX = FMA(TT, TU, TV * TW); | ||
|  | 			      T6p = FNMS(TV, TU, TT * TW); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TZ, T11, TY, T10; | ||
|  | 			      TZ = cr[WS(rs, 52)]; | ||
|  | 			      T11 = ci[WS(rs, 52)]; | ||
|  | 			      TY = W[102]; | ||
|  | 			      T10 = W[103]; | ||
|  | 			      T12 = FMA(TY, TZ, T10 * T11); | ||
|  | 			      T6q = FNMS(T10, TZ, TY * T11); | ||
|  | 			 } | ||
|  | 			 T13 = TX + T12; | ||
|  | 			 TcS = T6p + T6q; | ||
|  | 			 T6r = T6p - T6q; | ||
|  | 			 T6w = TX - T12; | ||
|  | 		    } | ||
|  | 		    T14 = TS + T13; | ||
|  | 		    Tfr = TcR + TcS; | ||
|  | 		    T6s = T6o - T6r; | ||
|  | 		    T6x = T6v + T6w; | ||
|  | 		    T6y = FNMS(KP382683432, T6x, KP923879532 * T6s); | ||
|  | 		    T9O = FMA(KP923879532, T6x, KP382683432 * T6s); | ||
|  | 		    { | ||
|  | 			 E TaE, TaF, TcQ, TcT; | ||
|  | 			 TaE = T6v - T6w; | ||
|  | 			 TaF = T6o + T6r; | ||
|  | 			 TaG = FMA(KP382683432, TaE, KP923879532 * TaF); | ||
|  | 			 Tc0 = FNMS(KP923879532, TaE, KP382683432 * TaF); | ||
|  | 			 TcQ = TS - T13; | ||
|  | 			 TcT = TcR - TcS; | ||
|  | 			 TcU = TcQ + TcT; | ||
|  | 			 TeE = TcQ - TcT; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; | ||
|  | 		    { | ||
|  | 			 E T19, T6z, T1e, T6A; | ||
|  | 			 { | ||
|  | 			      E T16, T18, T15, T17; | ||
|  | 			      T16 = cr[WS(rs, 60)]; | ||
|  | 			      T18 = ci[WS(rs, 60)]; | ||
|  | 			      T15 = W[118]; | ||
|  | 			      T17 = W[119]; | ||
|  | 			      T19 = FMA(T15, T16, T17 * T18); | ||
|  | 			      T6z = FNMS(T17, T16, T15 * T18); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1b, T1d, T1a, T1c; | ||
|  | 			      T1b = cr[WS(rs, 28)]; | ||
|  | 			      T1d = ci[WS(rs, 28)]; | ||
|  | 			      T1a = W[54]; | ||
|  | 			      T1c = W[55]; | ||
|  | 			      T1e = FMA(T1a, T1b, T1c * T1d); | ||
|  | 			      T6A = FNMS(T1c, T1b, T1a * T1d); | ||
|  | 			 } | ||
|  | 			 T1f = T19 + T1e; | ||
|  | 			 TcW = T6z + T6A; | ||
|  | 			 T6B = T6z - T6A; | ||
|  | 			 T6E = T19 - T1e; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1k, T6F, T1p, T6G; | ||
|  | 			 { | ||
|  | 			      E T1h, T1j, T1g, T1i; | ||
|  | 			      T1h = cr[WS(rs, 12)]; | ||
|  | 			      T1j = ci[WS(rs, 12)]; | ||
|  | 			      T1g = W[22]; | ||
|  | 			      T1i = W[23]; | ||
|  | 			      T1k = FMA(T1g, T1h, T1i * T1j); | ||
|  | 			      T6F = FNMS(T1i, T1h, T1g * T1j); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1m, T1o, T1l, T1n; | ||
|  | 			      T1m = cr[WS(rs, 44)]; | ||
|  | 			      T1o = ci[WS(rs, 44)]; | ||
|  | 			      T1l = W[86]; | ||
|  | 			      T1n = W[87]; | ||
|  | 			      T1p = FMA(T1l, T1m, T1n * T1o); | ||
|  | 			      T6G = FNMS(T1n, T1m, T1l * T1o); | ||
|  | 			 } | ||
|  | 			 T1q = T1k + T1p; | ||
|  | 			 TcX = T6F + T6G; | ||
|  | 			 T6C = T1k - T1p; | ||
|  | 			 T6H = T6F - T6G; | ||
|  | 		    } | ||
|  | 		    T1r = T1f + T1q; | ||
|  | 		    Tfq = TcW + TcX; | ||
|  | 		    T6D = T6B + T6C; | ||
|  | 		    T6I = T6E - T6H; | ||
|  | 		    T6J = FMA(KP382683432, T6D, KP923879532 * T6I); | ||
|  | 		    T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); | ||
|  | 		    { | ||
|  | 			 E TaH, TaI, TcV, TcY; | ||
|  | 			 TaH = T6E + T6H; | ||
|  | 			 TaI = T6B - T6C; | ||
|  | 			 TaJ = FNMS(KP382683432, TaI, KP923879532 * TaH); | ||
|  | 			 Tc1 = FMA(KP923879532, TaI, KP382683432 * TaH); | ||
|  | 			 TcV = T1f - T1q; | ||
|  | 			 TcY = TcW - TcX; | ||
|  | 			 TcZ = TcV - TcY; | ||
|  | 			 TeF = TcV + TcY; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1y, T73, T1D, T74, T1E, Td7, T1J, T6N, T1O, T6O, T1P, Td8, T21, Td4, T6R; | ||
|  | 		    E T6U, T2c, Td3, T6W, T6Z; | ||
|  | 		    { | ||
|  | 			 E T1v, T1x, T1u, T1w; | ||
|  | 			 T1v = cr[WS(rs, 2)]; | ||
|  | 			 T1x = ci[WS(rs, 2)]; | ||
|  | 			 T1u = W[2]; | ||
|  | 			 T1w = W[3]; | ||
|  | 			 T1y = FMA(T1u, T1v, T1w * T1x); | ||
|  | 			 T73 = FNMS(T1w, T1v, T1u * T1x); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1A, T1C, T1z, T1B; | ||
|  | 			 T1A = cr[WS(rs, 34)]; | ||
|  | 			 T1C = ci[WS(rs, 34)]; | ||
|  | 			 T1z = W[66]; | ||
|  | 			 T1B = W[67]; | ||
|  | 			 T1D = FMA(T1z, T1A, T1B * T1C); | ||
|  | 			 T74 = FNMS(T1B, T1A, T1z * T1C); | ||
|  | 		    } | ||
|  | 		    T1E = T1y + T1D; | ||
|  | 		    Td7 = T73 + T74; | ||
|  | 		    { | ||
|  | 			 E T1G, T1I, T1F, T1H; | ||
|  | 			 T1G = cr[WS(rs, 18)]; | ||
|  | 			 T1I = ci[WS(rs, 18)]; | ||
|  | 			 T1F = W[34]; | ||
|  | 			 T1H = W[35]; | ||
|  | 			 T1J = FMA(T1F, T1G, T1H * T1I); | ||
|  | 			 T6N = FNMS(T1H, T1G, T1F * T1I); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1L, T1N, T1K, T1M; | ||
|  | 			 T1L = cr[WS(rs, 50)]; | ||
|  | 			 T1N = ci[WS(rs, 50)]; | ||
|  | 			 T1K = W[98]; | ||
|  | 			 T1M = W[99]; | ||
|  | 			 T1O = FMA(T1K, T1L, T1M * T1N); | ||
|  | 			 T6O = FNMS(T1M, T1L, T1K * T1N); | ||
|  | 		    } | ||
|  | 		    T1P = T1J + T1O; | ||
|  | 		    Td8 = T6N + T6O; | ||
|  | 		    { | ||
|  | 			 E T1V, T6S, T20, T6T; | ||
|  | 			 { | ||
|  | 			      E T1S, T1U, T1R, T1T; | ||
|  | 			      T1S = cr[WS(rs, 10)]; | ||
|  | 			      T1U = ci[WS(rs, 10)]; | ||
|  | 			      T1R = W[18]; | ||
|  | 			      T1T = W[19]; | ||
|  | 			      T1V = FMA(T1R, T1S, T1T * T1U); | ||
|  | 			      T6S = FNMS(T1T, T1S, T1R * T1U); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1X, T1Z, T1W, T1Y; | ||
|  | 			      T1X = cr[WS(rs, 42)]; | ||
|  | 			      T1Z = ci[WS(rs, 42)]; | ||
|  | 			      T1W = W[82]; | ||
|  | 			      T1Y = W[83]; | ||
|  | 			      T20 = FMA(T1W, T1X, T1Y * T1Z); | ||
|  | 			      T6T = FNMS(T1Y, T1X, T1W * T1Z); | ||
|  | 			 } | ||
|  | 			 T21 = T1V + T20; | ||
|  | 			 Td4 = T6S + T6T; | ||
|  | 			 T6R = T1V - T20; | ||
|  | 			 T6U = T6S - T6T; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T26, T6X, T2b, T6Y; | ||
|  | 			 { | ||
|  | 			      E T23, T25, T22, T24; | ||
|  | 			      T23 = cr[WS(rs, 58)]; | ||
|  | 			      T25 = ci[WS(rs, 58)]; | ||
|  | 			      T22 = W[114]; | ||
|  | 			      T24 = W[115]; | ||
|  | 			      T26 = FMA(T22, T23, T24 * T25); | ||
|  | 			      T6X = FNMS(T24, T23, T22 * T25); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T28, T2a, T27, T29; | ||
|  | 			      T28 = cr[WS(rs, 26)]; | ||
|  | 			      T2a = ci[WS(rs, 26)]; | ||
|  | 			      T27 = W[50]; | ||
|  | 			      T29 = W[51]; | ||
|  | 			      T2b = FMA(T27, T28, T29 * T2a); | ||
|  | 			      T6Y = FNMS(T29, T28, T27 * T2a); | ||
|  | 			 } | ||
|  | 			 T2c = T26 + T2b; | ||
|  | 			 Td3 = T6X + T6Y; | ||
|  | 			 T6W = T26 - T2b; | ||
|  | 			 T6Z = T6X - T6Y; | ||
|  | 		    } | ||
|  | 		    T1Q = T1E + T1P; | ||
|  | 		    T2d = T21 + T2c; | ||
|  | 		    Tfu = T1Q - T2d; | ||
|  | 		    Tfv = Td7 + Td8; | ||
|  | 		    Tfw = Td4 + Td3; | ||
|  | 		    Tfx = Tfv - Tfw; | ||
|  | 		    { | ||
|  | 			 E T6M, T6P, Td9, Tda; | ||
|  | 			 T6M = T1y - T1D; | ||
|  | 			 T6P = T6N - T6O; | ||
|  | 			 T6Q = T6M - T6P; | ||
|  | 			 TaM = T6M + T6P; | ||
|  | 			 Td9 = Td7 - Td8; | ||
|  | 			 Tda = T21 - T2c; | ||
|  | 			 Tdb = Td9 - Tda; | ||
|  | 			 TeI = Td9 + Tda; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T6V, T70, T78, T79; | ||
|  | 			 T6V = T6R - T6U; | ||
|  | 			 T70 = T6W + T6Z; | ||
|  | 			 T71 = KP707106781 * (T6V + T70); | ||
|  | 			 TaQ = KP707106781 * (T70 - T6V); | ||
|  | 			 T78 = T6R + T6U; | ||
|  | 			 T79 = T6Z - T6W; | ||
|  | 			 T7a = KP707106781 * (T78 + T79); | ||
|  | 			 TaN = KP707106781 * (T78 - T79); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td2, Td5, T75, T76; | ||
|  | 			 Td2 = T1E - T1P; | ||
|  | 			 Td5 = Td3 - Td4; | ||
|  | 			 Td6 = Td2 - Td5; | ||
|  | 			 TeJ = Td2 + Td5; | ||
|  | 			 T75 = T73 - T74; | ||
|  | 			 T76 = T1J - T1O; | ||
|  | 			 T77 = T75 + T76; | ||
|  | 			 TaP = T75 - T76; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T2j, T7u, T2o, T7v, T2p, Tdd, T2u, T7e, T2z, T7f, T2A, Tde, T2M, Tdk, T7i; | ||
|  | 		    E T7l, T2X, Tdj, T7n, T7q; | ||
|  | 		    { | ||
|  | 			 E T2g, T2i, T2f, T2h; | ||
|  | 			 T2g = cr[WS(rs, 62)]; | ||
|  | 			 T2i = ci[WS(rs, 62)]; | ||
|  | 			 T2f = W[122]; | ||
|  | 			 T2h = W[123]; | ||
|  | 			 T2j = FMA(T2f, T2g, T2h * T2i); | ||
|  | 			 T7u = FNMS(T2h, T2g, T2f * T2i); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2l, T2n, T2k, T2m; | ||
|  | 			 T2l = cr[WS(rs, 30)]; | ||
|  | 			 T2n = ci[WS(rs, 30)]; | ||
|  | 			 T2k = W[58]; | ||
|  | 			 T2m = W[59]; | ||
|  | 			 T2o = FMA(T2k, T2l, T2m * T2n); | ||
|  | 			 T7v = FNMS(T2m, T2l, T2k * T2n); | ||
|  | 		    } | ||
|  | 		    T2p = T2j + T2o; | ||
|  | 		    Tdd = T7u + T7v; | ||
|  | 		    { | ||
|  | 			 E T2r, T2t, T2q, T2s; | ||
|  | 			 T2r = cr[WS(rs, 14)]; | ||
|  | 			 T2t = ci[WS(rs, 14)]; | ||
|  | 			 T2q = W[26]; | ||
|  | 			 T2s = W[27]; | ||
|  | 			 T2u = FMA(T2q, T2r, T2s * T2t); | ||
|  | 			 T7e = FNMS(T2s, T2r, T2q * T2t); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2w, T2y, T2v, T2x; | ||
|  | 			 T2w = cr[WS(rs, 46)]; | ||
|  | 			 T2y = ci[WS(rs, 46)]; | ||
|  | 			 T2v = W[90]; | ||
|  | 			 T2x = W[91]; | ||
|  | 			 T2z = FMA(T2v, T2w, T2x * T2y); | ||
|  | 			 T7f = FNMS(T2x, T2w, T2v * T2y); | ||
|  | 		    } | ||
|  | 		    T2A = T2u + T2z; | ||
|  | 		    Tde = T7e + T7f; | ||
|  | 		    { | ||
|  | 			 E T2G, T7j, T2L, T7k; | ||
|  | 			 { | ||
|  | 			      E T2D, T2F, T2C, T2E; | ||
|  | 			      T2D = cr[WS(rs, 6)]; | ||
|  | 			      T2F = ci[WS(rs, 6)]; | ||
|  | 			      T2C = W[10]; | ||
|  | 			      T2E = W[11]; | ||
|  | 			      T2G = FMA(T2C, T2D, T2E * T2F); | ||
|  | 			      T7j = FNMS(T2E, T2D, T2C * T2F); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2I, T2K, T2H, T2J; | ||
|  | 			      T2I = cr[WS(rs, 38)]; | ||
|  | 			      T2K = ci[WS(rs, 38)]; | ||
|  | 			      T2H = W[74]; | ||
|  | 			      T2J = W[75]; | ||
|  | 			      T2L = FMA(T2H, T2I, T2J * T2K); | ||
|  | 			      T7k = FNMS(T2J, T2I, T2H * T2K); | ||
|  | 			 } | ||
|  | 			 T2M = T2G + T2L; | ||
|  | 			 Tdk = T7j + T7k; | ||
|  | 			 T7i = T2G - T2L; | ||
|  | 			 T7l = T7j - T7k; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2R, T7o, T2W, T7p; | ||
|  | 			 { | ||
|  | 			      E T2O, T2Q, T2N, T2P; | ||
|  | 			      T2O = cr[WS(rs, 54)]; | ||
|  | 			      T2Q = ci[WS(rs, 54)]; | ||
|  | 			      T2N = W[106]; | ||
|  | 			      T2P = W[107]; | ||
|  | 			      T2R = FMA(T2N, T2O, T2P * T2Q); | ||
|  | 			      T7o = FNMS(T2P, T2O, T2N * T2Q); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2T, T2V, T2S, T2U; | ||
|  | 			      T2T = cr[WS(rs, 22)]; | ||
|  | 			      T2V = ci[WS(rs, 22)]; | ||
|  | 			      T2S = W[42]; | ||
|  | 			      T2U = W[43]; | ||
|  | 			      T2W = FMA(T2S, T2T, T2U * T2V); | ||
|  | 			      T7p = FNMS(T2U, T2T, T2S * T2V); | ||
|  | 			 } | ||
|  | 			 T2X = T2R + T2W; | ||
|  | 			 Tdj = T7o + T7p; | ||
|  | 			 T7n = T2R - T2W; | ||
|  | 			 T7q = T7o - T7p; | ||
|  | 		    } | ||
|  | 		    T2B = T2p + T2A; | ||
|  | 		    T2Y = T2M + T2X; | ||
|  | 		    Tfz = T2B - T2Y; | ||
|  | 		    TfA = Tdd + Tde; | ||
|  | 		    TfB = Tdk + Tdj; | ||
|  | 		    TfC = TfA - TfB; | ||
|  | 		    { | ||
|  | 			 E T7d, T7g, Tdi, Tdl; | ||
|  | 			 T7d = T2j - T2o; | ||
|  | 			 T7g = T7e - T7f; | ||
|  | 			 T7h = T7d - T7g; | ||
|  | 			 TaW = T7d + T7g; | ||
|  | 			 Tdi = T2p - T2A; | ||
|  | 			 Tdl = Tdj - Tdk; | ||
|  | 			 Tdm = Tdi - Tdl; | ||
|  | 			 TeL = Tdi + Tdl; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7m, T7r, T7z, T7A; | ||
|  | 			 T7m = T7i - T7l; | ||
|  | 			 T7r = T7n + T7q; | ||
|  | 			 T7s = KP707106781 * (T7m + T7r); | ||
|  | 			 TaU = KP707106781 * (T7r - T7m); | ||
|  | 			 T7z = T7i + T7l; | ||
|  | 			 T7A = T7q - T7n; | ||
|  | 			 T7B = KP707106781 * (T7z + T7A); | ||
|  | 			 TaX = KP707106781 * (T7z - T7A); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdf, Tdg, T7w, T7x; | ||
|  | 			 Tdf = Tdd - Tde; | ||
|  | 			 Tdg = T2M - T2X; | ||
|  | 			 Tdh = Tdf - Tdg; | ||
|  | 			 TeM = Tdf + Tdg; | ||
|  | 			 T7w = T7u - T7v; | ||
|  | 			 T7x = T2u - T2z; | ||
|  | 			 T7y = T7w + T7x; | ||
|  | 			 TaT = T7w - T7x; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T4D, T9e, T4I, T9f, T4J, TdR, T4O, T8A, T4T, T8B, T4U, TdS, T56, Tea, T8E; | ||
|  | 		    E T8H, T5h, Te9, T8J, T8M; | ||
|  | 		    { | ||
|  | 			 E T4A, T4C, T4z, T4B; | ||
|  | 			 T4A = cr[WS(rs, 63)]; | ||
|  | 			 T4C = ci[WS(rs, 63)]; | ||
|  | 			 T4z = W[124]; | ||
|  | 			 T4B = W[125]; | ||
|  | 			 T4D = FMA(T4z, T4A, T4B * T4C); | ||
|  | 			 T9e = FNMS(T4B, T4A, T4z * T4C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4F, T4H, T4E, T4G; | ||
|  | 			 T4F = cr[WS(rs, 31)]; | ||
|  | 			 T4H = ci[WS(rs, 31)]; | ||
|  | 			 T4E = W[60]; | ||
|  | 			 T4G = W[61]; | ||
|  | 			 T4I = FMA(T4E, T4F, T4G * T4H); | ||
|  | 			 T9f = FNMS(T4G, T4F, T4E * T4H); | ||
|  | 		    } | ||
|  | 		    T4J = T4D + T4I; | ||
|  | 		    TdR = T9e + T9f; | ||
|  | 		    { | ||
|  | 			 E T4L, T4N, T4K, T4M; | ||
|  | 			 T4L = cr[WS(rs, 15)]; | ||
|  | 			 T4N = ci[WS(rs, 15)]; | ||
|  | 			 T4K = W[28]; | ||
|  | 			 T4M = W[29]; | ||
|  | 			 T4O = FMA(T4K, T4L, T4M * T4N); | ||
|  | 			 T8A = FNMS(T4M, T4L, T4K * T4N); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4Q, T4S, T4P, T4R; | ||
|  | 			 T4Q = cr[WS(rs, 47)]; | ||
|  | 			 T4S = ci[WS(rs, 47)]; | ||
|  | 			 T4P = W[92]; | ||
|  | 			 T4R = W[93]; | ||
|  | 			 T4T = FMA(T4P, T4Q, T4R * T4S); | ||
|  | 			 T8B = FNMS(T4R, T4Q, T4P * T4S); | ||
|  | 		    } | ||
|  | 		    T4U = T4O + T4T; | ||
|  | 		    TdS = T8A + T8B; | ||
|  | 		    { | ||
|  | 			 E T50, T8F, T55, T8G; | ||
|  | 			 { | ||
|  | 			      E T4X, T4Z, T4W, T4Y; | ||
|  | 			      T4X = cr[WS(rs, 7)]; | ||
|  | 			      T4Z = ci[WS(rs, 7)]; | ||
|  | 			      T4W = W[12]; | ||
|  | 			      T4Y = W[13]; | ||
|  | 			      T50 = FMA(T4W, T4X, T4Y * T4Z); | ||
|  | 			      T8F = FNMS(T4Y, T4X, T4W * T4Z); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T52, T54, T51, T53; | ||
|  | 			      T52 = cr[WS(rs, 39)]; | ||
|  | 			      T54 = ci[WS(rs, 39)]; | ||
|  | 			      T51 = W[76]; | ||
|  | 			      T53 = W[77]; | ||
|  | 			      T55 = FMA(T51, T52, T53 * T54); | ||
|  | 			      T8G = FNMS(T53, T52, T51 * T54); | ||
|  | 			 } | ||
|  | 			 T56 = T50 + T55; | ||
|  | 			 Tea = T8F + T8G; | ||
|  | 			 T8E = T50 - T55; | ||
|  | 			 T8H = T8F - T8G; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5b, T8K, T5g, T8L; | ||
|  | 			 { | ||
|  | 			      E T58, T5a, T57, T59; | ||
|  | 			      T58 = cr[WS(rs, 55)]; | ||
|  | 			      T5a = ci[WS(rs, 55)]; | ||
|  | 			      T57 = W[108]; | ||
|  | 			      T59 = W[109]; | ||
|  | 			      T5b = FMA(T57, T58, T59 * T5a); | ||
|  | 			      T8K = FNMS(T59, T58, T57 * T5a); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T5d, T5f, T5c, T5e; | ||
|  | 			      T5d = cr[WS(rs, 23)]; | ||
|  | 			      T5f = ci[WS(rs, 23)]; | ||
|  | 			      T5c = W[44]; | ||
|  | 			      T5e = W[45]; | ||
|  | 			      T5g = FMA(T5c, T5d, T5e * T5f); | ||
|  | 			      T8L = FNMS(T5e, T5d, T5c * T5f); | ||
|  | 			 } | ||
|  | 			 T5h = T5b + T5g; | ||
|  | 			 Te9 = T8K + T8L; | ||
|  | 			 T8J = T5b - T5g; | ||
|  | 			 T8M = T8K - T8L; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4V, T5i, Te8, Teb; | ||
|  | 			 T4V = T4J + T4U; | ||
|  | 			 T5i = T56 + T5h; | ||
|  | 			 T5j = T4V + T5i; | ||
|  | 			 TfR = T4V - T5i; | ||
|  | 			 Te8 = T4J - T4U; | ||
|  | 			 Teb = Te9 - Tea; | ||
|  | 			 Tec = Te8 - Teb; | ||
|  | 			 TeX = Te8 + Teb; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfW, TfX, T8z, T8C; | ||
|  | 			 TfW = TdR + TdS; | ||
|  | 			 TfX = Tea + Te9; | ||
|  | 			 TfY = TfW - TfX; | ||
|  | 			 Tgy = TfW + TfX; | ||
|  | 			 T8z = T4D - T4I; | ||
|  | 			 T8C = T8A - T8B; | ||
|  | 			 T8D = T8z - T8C; | ||
|  | 			 Tbl = T8z + T8C; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8I, T8N, T9j, T9k; | ||
|  | 			 T8I = T8E - T8H; | ||
|  | 			 T8N = T8J + T8M; | ||
|  | 			 T8O = KP707106781 * (T8I + T8N); | ||
|  | 			 Tbx = KP707106781 * (T8N - T8I); | ||
|  | 			 T9j = T8E + T8H; | ||
|  | 			 T9k = T8M - T8J; | ||
|  | 			 T9l = KP707106781 * (T9j + T9k); | ||
|  | 			 Tbm = KP707106781 * (T9j - T9k); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdT, TdU, T9g, T9h; | ||
|  | 			 TdT = TdR - TdS; | ||
|  | 			 TdU = T56 - T5h; | ||
|  | 			 TdV = TdT - TdU; | ||
|  | 			 Tf0 = TdT + TdU; | ||
|  | 			 T9g = T9e - T9f; | ||
|  | 			 T9h = T4O - T4T; | ||
|  | 			 T9i = T9g + T9h; | ||
|  | 			 Tbw = T9g - T9h; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T36, T7G, T3b, T7H, T3c, TdH, T3h, T8m, T3m, T8n, T3n, TdI, T3z, Tds, T7L; | ||
|  | 		    E T7O, T3K, Tdr, T7S, T7T; | ||
|  | 		    { | ||
|  | 			 E T33, T35, T32, T34; | ||
|  | 			 T33 = cr[WS(rs, 1)]; | ||
|  | 			 T35 = ci[WS(rs, 1)]; | ||
|  | 			 T32 = W[0]; | ||
|  | 			 T34 = W[1]; | ||
|  | 			 T36 = FMA(T32, T33, T34 * T35); | ||
|  | 			 T7G = FNMS(T34, T33, T32 * T35); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T38, T3a, T37, T39; | ||
|  | 			 T38 = cr[WS(rs, 33)]; | ||
|  | 			 T3a = ci[WS(rs, 33)]; | ||
|  | 			 T37 = W[64]; | ||
|  | 			 T39 = W[65]; | ||
|  | 			 T3b = FMA(T37, T38, T39 * T3a); | ||
|  | 			 T7H = FNMS(T39, T38, T37 * T3a); | ||
|  | 		    } | ||
|  | 		    T3c = T36 + T3b; | ||
|  | 		    TdH = T7G + T7H; | ||
|  | 		    { | ||
|  | 			 E T3e, T3g, T3d, T3f; | ||
|  | 			 T3e = cr[WS(rs, 17)]; | ||
|  | 			 T3g = ci[WS(rs, 17)]; | ||
|  | 			 T3d = W[32]; | ||
|  | 			 T3f = W[33]; | ||
|  | 			 T3h = FMA(T3d, T3e, T3f * T3g); | ||
|  | 			 T8m = FNMS(T3f, T3e, T3d * T3g); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3j, T3l, T3i, T3k; | ||
|  | 			 T3j = cr[WS(rs, 49)]; | ||
|  | 			 T3l = ci[WS(rs, 49)]; | ||
|  | 			 T3i = W[96]; | ||
|  | 			 T3k = W[97]; | ||
|  | 			 T3m = FMA(T3i, T3j, T3k * T3l); | ||
|  | 			 T8n = FNMS(T3k, T3j, T3i * T3l); | ||
|  | 		    } | ||
|  | 		    T3n = T3h + T3m; | ||
|  | 		    TdI = T8m + T8n; | ||
|  | 		    { | ||
|  | 			 E T3t, T7M, T3y, T7N; | ||
|  | 			 { | ||
|  | 			      E T3q, T3s, T3p, T3r; | ||
|  | 			      T3q = cr[WS(rs, 9)]; | ||
|  | 			      T3s = ci[WS(rs, 9)]; | ||
|  | 			      T3p = W[16]; | ||
|  | 			      T3r = W[17]; | ||
|  | 			      T3t = FMA(T3p, T3q, T3r * T3s); | ||
|  | 			      T7M = FNMS(T3r, T3q, T3p * T3s); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3v, T3x, T3u, T3w; | ||
|  | 			      T3v = cr[WS(rs, 41)]; | ||
|  | 			      T3x = ci[WS(rs, 41)]; | ||
|  | 			      T3u = W[80]; | ||
|  | 			      T3w = W[81]; | ||
|  | 			      T3y = FMA(T3u, T3v, T3w * T3x); | ||
|  | 			      T7N = FNMS(T3w, T3v, T3u * T3x); | ||
|  | 			 } | ||
|  | 			 T3z = T3t + T3y; | ||
|  | 			 Tds = T7M + T7N; | ||
|  | 			 T7L = T3t - T3y; | ||
|  | 			 T7O = T7M - T7N; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3E, T7Q, T3J, T7R; | ||
|  | 			 { | ||
|  | 			      E T3B, T3D, T3A, T3C; | ||
|  | 			      T3B = cr[WS(rs, 57)]; | ||
|  | 			      T3D = ci[WS(rs, 57)]; | ||
|  | 			      T3A = W[112]; | ||
|  | 			      T3C = W[113]; | ||
|  | 			      T3E = FMA(T3A, T3B, T3C * T3D); | ||
|  | 			      T7Q = FNMS(T3C, T3B, T3A * T3D); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3G, T3I, T3F, T3H; | ||
|  | 			      T3G = cr[WS(rs, 25)]; | ||
|  | 			      T3I = ci[WS(rs, 25)]; | ||
|  | 			      T3F = W[48]; | ||
|  | 			      T3H = W[49]; | ||
|  | 			      T3J = FMA(T3F, T3G, T3H * T3I); | ||
|  | 			      T7R = FNMS(T3H, T3G, T3F * T3I); | ||
|  | 			 } | ||
|  | 			 T3K = T3E + T3J; | ||
|  | 			 Tdr = T7Q + T7R; | ||
|  | 			 T7S = T7Q - T7R; | ||
|  | 			 T7T = T3E - T3J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3o, T3L, TdJ, TdK; | ||
|  | 			 T3o = T3c + T3n; | ||
|  | 			 T3L = T3z + T3K; | ||
|  | 			 T3M = T3o + T3L; | ||
|  | 			 TfL = T3o - T3L; | ||
|  | 			 TdJ = TdH - TdI; | ||
|  | 			 TdK = T3z - T3K; | ||
|  | 			 TdL = TdJ - TdK; | ||
|  | 			 TeT = TdJ + TdK; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfG, TfH, T7I, T7J; | ||
|  | 			 TfG = TdH + TdI; | ||
|  | 			 TfH = Tds + Tdr; | ||
|  | 			 TfI = TfG - TfH; | ||
|  | 			 Tgt = TfG + TfH; | ||
|  | 			 T7I = T7G - T7H; | ||
|  | 			 T7J = T3h - T3m; | ||
|  | 			 T7K = T7I + T7J; | ||
|  | 			 Tbd = T7I - T7J; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7P, T7U, T8q, T8r; | ||
|  | 			 T7P = T7L + T7O; | ||
|  | 			 T7U = T7S - T7T; | ||
|  | 			 T7V = KP707106781 * (T7P + T7U); | ||
|  | 			 Tb3 = KP707106781 * (T7P - T7U); | ||
|  | 			 T8q = T7L - T7O; | ||
|  | 			 T8r = T7T + T7S; | ||
|  | 			 T8s = KP707106781 * (T8q + T8r); | ||
|  | 			 Tbe = KP707106781 * (T8r - T8q); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdq, Tdt, T8l, T8o; | ||
|  | 			 Tdq = T3c - T3n; | ||
|  | 			 Tdt = Tdr - Tds; | ||
|  | 			 Tdu = Tdq - Tdt; | ||
|  | 			 TeQ = Tdq + Tdt; | ||
|  | 			 T8l = T36 - T3b; | ||
|  | 			 T8o = T8m - T8n; | ||
|  | 			 T8p = T8l - T8o; | ||
|  | 			 Tb2 = T8l + T8o; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T3X, Tdw, T7Z, T82, T4v, TdB, T8b, T8g, T48, Tdx, T80, T85, T4k, TdA, T8a; | ||
|  | 		    E T8d; | ||
|  | 		    { | ||
|  | 			 E T3R, T7X, T3W, T7Y; | ||
|  | 			 { | ||
|  | 			      E T3O, T3Q, T3N, T3P; | ||
|  | 			      T3O = cr[WS(rs, 5)]; | ||
|  | 			      T3Q = ci[WS(rs, 5)]; | ||
|  | 			      T3N = W[8]; | ||
|  | 			      T3P = W[9]; | ||
|  | 			      T3R = FMA(T3N, T3O, T3P * T3Q); | ||
|  | 			      T7X = FNMS(T3P, T3O, T3N * T3Q); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3T, T3V, T3S, T3U; | ||
|  | 			      T3T = cr[WS(rs, 37)]; | ||
|  | 			      T3V = ci[WS(rs, 37)]; | ||
|  | 			      T3S = W[72]; | ||
|  | 			      T3U = W[73]; | ||
|  | 			      T3W = FMA(T3S, T3T, T3U * T3V); | ||
|  | 			      T7Y = FNMS(T3U, T3T, T3S * T3V); | ||
|  | 			 } | ||
|  | 			 T3X = T3R + T3W; | ||
|  | 			 Tdw = T7X + T7Y; | ||
|  | 			 T7Z = T7X - T7Y; | ||
|  | 			 T82 = T3R - T3W; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4p, T8e, T4u, T8f; | ||
|  | 			 { | ||
|  | 			      E T4m, T4o, T4l, T4n; | ||
|  | 			      T4m = cr[WS(rs, 13)]; | ||
|  | 			      T4o = ci[WS(rs, 13)]; | ||
|  | 			      T4l = W[24]; | ||
|  | 			      T4n = W[25]; | ||
|  | 			      T4p = FMA(T4l, T4m, T4n * T4o); | ||
|  | 			      T8e = FNMS(T4n, T4m, T4l * T4o); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4r, T4t, T4q, T4s; | ||
|  | 			      T4r = cr[WS(rs, 45)]; | ||
|  | 			      T4t = ci[WS(rs, 45)]; | ||
|  | 			      T4q = W[88]; | ||
|  | 			      T4s = W[89]; | ||
|  | 			      T4u = FMA(T4q, T4r, T4s * T4t); | ||
|  | 			      T8f = FNMS(T4s, T4r, T4q * T4t); | ||
|  | 			 } | ||
|  | 			 T4v = T4p + T4u; | ||
|  | 			 TdB = T8e + T8f; | ||
|  | 			 T8b = T4p - T4u; | ||
|  | 			 T8g = T8e - T8f; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T42, T83, T47, T84; | ||
|  | 			 { | ||
|  | 			      E T3Z, T41, T3Y, T40; | ||
|  | 			      T3Z = cr[WS(rs, 21)]; | ||
|  | 			      T41 = ci[WS(rs, 21)]; | ||
|  | 			      T3Y = W[40]; | ||
|  | 			      T40 = W[41]; | ||
|  | 			      T42 = FMA(T3Y, T3Z, T40 * T41); | ||
|  | 			      T83 = FNMS(T40, T3Z, T3Y * T41); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T44, T46, T43, T45; | ||
|  | 			      T44 = cr[WS(rs, 53)]; | ||
|  | 			      T46 = ci[WS(rs, 53)]; | ||
|  | 			      T43 = W[104]; | ||
|  | 			      T45 = W[105]; | ||
|  | 			      T47 = FMA(T43, T44, T45 * T46); | ||
|  | 			      T84 = FNMS(T45, T44, T43 * T46); | ||
|  | 			 } | ||
|  | 			 T48 = T42 + T47; | ||
|  | 			 Tdx = T83 + T84; | ||
|  | 			 T80 = T42 - T47; | ||
|  | 			 T85 = T83 - T84; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4e, T88, T4j, T89; | ||
|  | 			 { | ||
|  | 			      E T4b, T4d, T4a, T4c; | ||
|  | 			      T4b = cr[WS(rs, 61)]; | ||
|  | 			      T4d = ci[WS(rs, 61)]; | ||
|  | 			      T4a = W[120]; | ||
|  | 			      T4c = W[121]; | ||
|  | 			      T4e = FMA(T4a, T4b, T4c * T4d); | ||
|  | 			      T88 = FNMS(T4c, T4b, T4a * T4d); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4g, T4i, T4f, T4h; | ||
|  | 			      T4g = cr[WS(rs, 29)]; | ||
|  | 			      T4i = ci[WS(rs, 29)]; | ||
|  | 			      T4f = W[56]; | ||
|  | 			      T4h = W[57]; | ||
|  | 			      T4j = FMA(T4f, T4g, T4h * T4i); | ||
|  | 			      T89 = FNMS(T4h, T4g, T4f * T4i); | ||
|  | 			 } | ||
|  | 			 T4k = T4e + T4j; | ||
|  | 			 TdA = T88 + T89; | ||
|  | 			 T8a = T88 - T89; | ||
|  | 			 T8d = T4e - T4j; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T49, T4w, TdC, TdD; | ||
|  | 			 T49 = T3X + T48; | ||
|  | 			 T4w = T4k + T4v; | ||
|  | 			 T4x = T49 + T4w; | ||
|  | 			 TfJ = T49 - T4w; | ||
|  | 			 TdC = TdA - TdB; | ||
|  | 			 TdD = T4k - T4v; | ||
|  | 			 TdE = TdC - TdD; | ||
|  | 			 TdM = TdD + TdC; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfM, TfN, T81, T86; | ||
|  | 			 TfM = TdA + TdB; | ||
|  | 			 TfN = Tdw + Tdx; | ||
|  | 			 TfO = TfM - TfN; | ||
|  | 			 Tgu = TfN + TfM; | ||
|  | 			 T81 = T7Z + T80; | ||
|  | 			 T86 = T82 - T85; | ||
|  | 			 T87 = FMA(KP923879532, T81, KP382683432 * T86); | ||
|  | 			 T8u = FNMS(KP382683432, T81, KP923879532 * T86); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8c, T8h, Tb8, Tb9; | ||
|  | 			 T8c = T8a + T8b; | ||
|  | 			 T8h = T8d - T8g; | ||
|  | 			 T8i = FNMS(KP382683432, T8h, KP923879532 * T8c); | ||
|  | 			 T8v = FMA(KP382683432, T8c, KP923879532 * T8h); | ||
|  | 			 Tb8 = T8d + T8g; | ||
|  | 			 Tb9 = T8a - T8b; | ||
|  | 			 Tba = FNMS(KP382683432, Tb9, KP923879532 * Tb8); | ||
|  | 			 Tbh = FMA(KP923879532, Tb9, KP382683432 * Tb8); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdv, Tdy, Tb5, Tb6; | ||
|  | 			 Tdv = T3X - T48; | ||
|  | 			 Tdy = Tdw - Tdx; | ||
|  | 			 Tdz = Tdv + Tdy; | ||
|  | 			 TdN = Tdv - Tdy; | ||
|  | 			 Tb5 = T7Z - T80; | ||
|  | 			 Tb6 = T82 + T85; | ||
|  | 			 Tb7 = FMA(KP382683432, Tb5, KP923879532 * Tb6); | ||
|  | 			 Tbg = FNMS(KP382683432, Tb6, KP923879532 * Tb5); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5u, Te2, T8Q, T8X, T62, TdY, T94, T99, T5F, Te3, T8T, T8Y, T5R, TdX, T93; | ||
|  | 		    E T96; | ||
|  | 		    { | ||
|  | 			 E T5o, T8V, T5t, T8W; | ||
|  | 			 { | ||
|  | 			      E T5l, T5n, T5k, T5m; | ||
|  | 			      T5l = cr[WS(rs, 3)]; | ||
|  | 			      T5n = ci[WS(rs, 3)]; | ||
|  | 			      T5k = W[4]; | ||
|  | 			      T5m = W[5]; | ||
|  | 			      T5o = FMA(T5k, T5l, T5m * T5n); | ||
|  | 			      T8V = FNMS(T5m, T5l, T5k * T5n); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T5q, T5s, T5p, T5r; | ||
|  | 			      T5q = cr[WS(rs, 35)]; | ||
|  | 			      T5s = ci[WS(rs, 35)]; | ||
|  | 			      T5p = W[68]; | ||
|  | 			      T5r = W[69]; | ||
|  | 			      T5t = FMA(T5p, T5q, T5r * T5s); | ||
|  | 			      T8W = FNMS(T5r, T5q, T5p * T5s); | ||
|  | 			 } | ||
|  | 			 T5u = T5o + T5t; | ||
|  | 			 Te2 = T8V + T8W; | ||
|  | 			 T8Q = T5o - T5t; | ||
|  | 			 T8X = T8V - T8W; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5W, T97, T61, T98; | ||
|  | 			 { | ||
|  | 			      E T5T, T5V, T5S, T5U; | ||
|  | 			      T5T = cr[WS(rs, 11)]; | ||
|  | 			      T5V = ci[WS(rs, 11)]; | ||
|  | 			      T5S = W[20]; | ||
|  | 			      T5U = W[21]; | ||
|  | 			      T5W = FMA(T5S, T5T, T5U * T5V); | ||
|  | 			      T97 = FNMS(T5U, T5T, T5S * T5V); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T5Y, T60, T5X, T5Z; | ||
|  | 			      T5Y = cr[WS(rs, 43)]; | ||
|  | 			      T60 = ci[WS(rs, 43)]; | ||
|  | 			      T5X = W[84]; | ||
|  | 			      T5Z = W[85]; | ||
|  | 			      T61 = FMA(T5X, T5Y, T5Z * T60); | ||
|  | 			      T98 = FNMS(T5Z, T5Y, T5X * T60); | ||
|  | 			 } | ||
|  | 			 T62 = T5W + T61; | ||
|  | 			 TdY = T97 + T98; | ||
|  | 			 T94 = T5W - T61; | ||
|  | 			 T99 = T97 - T98; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5z, T8R, T5E, T8S; | ||
|  | 			 { | ||
|  | 			      E T5w, T5y, T5v, T5x; | ||
|  | 			      T5w = cr[WS(rs, 19)]; | ||
|  | 			      T5y = ci[WS(rs, 19)]; | ||
|  | 			      T5v = W[36]; | ||
|  | 			      T5x = W[37]; | ||
|  | 			      T5z = FMA(T5v, T5w, T5x * T5y); | ||
|  | 			      T8R = FNMS(T5x, T5w, T5v * T5y); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T5B, T5D, T5A, T5C; | ||
|  | 			      T5B = cr[WS(rs, 51)]; | ||
|  | 			      T5D = ci[WS(rs, 51)]; | ||
|  | 			      T5A = W[100]; | ||
|  | 			      T5C = W[101]; | ||
|  | 			      T5E = FMA(T5A, T5B, T5C * T5D); | ||
|  | 			      T8S = FNMS(T5C, T5B, T5A * T5D); | ||
|  | 			 } | ||
|  | 			 T5F = T5z + T5E; | ||
|  | 			 Te3 = T8R + T8S; | ||
|  | 			 T8T = T8R - T8S; | ||
|  | 			 T8Y = T5z - T5E; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5L, T91, T5Q, T92; | ||
|  | 			 { | ||
|  | 			      E T5I, T5K, T5H, T5J; | ||
|  | 			      T5I = cr[WS(rs, 59)]; | ||
|  | 			      T5K = ci[WS(rs, 59)]; | ||
|  | 			      T5H = W[116]; | ||
|  | 			      T5J = W[117]; | ||
|  | 			      T5L = FMA(T5H, T5I, T5J * T5K); | ||
|  | 			      T91 = FNMS(T5J, T5I, T5H * T5K); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T5N, T5P, T5M, T5O; | ||
|  | 			      T5N = cr[WS(rs, 27)]; | ||
|  | 			      T5P = ci[WS(rs, 27)]; | ||
|  | 			      T5M = W[52]; | ||
|  | 			      T5O = W[53]; | ||
|  | 			      T5Q = FMA(T5M, T5N, T5O * T5P); | ||
|  | 			      T92 = FNMS(T5O, T5N, T5M * T5P); | ||
|  | 			 } | ||
|  | 			 T5R = T5L + T5Q; | ||
|  | 			 TdX = T91 + T92; | ||
|  | 			 T93 = T91 - T92; | ||
|  | 			 T96 = T5L - T5Q; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5G, T63, Te1, Te4; | ||
|  | 			 T5G = T5u + T5F; | ||
|  | 			 T63 = T5R + T62; | ||
|  | 			 T64 = T5G + T63; | ||
|  | 			 TfZ = T5G - T63; | ||
|  | 			 Te1 = T5u - T5F; | ||
|  | 			 Te4 = Te2 - Te3; | ||
|  | 			 Te5 = Te1 - Te4; | ||
|  | 			 Ted = Te1 + Te4; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfS, TfT, T8U, T8Z; | ||
|  | 			 TfS = TdX + TdY; | ||
|  | 			 TfT = Te2 + Te3; | ||
|  | 			 TfU = TfS - TfT; | ||
|  | 			 Tgz = TfT + TfS; | ||
|  | 			 T8U = T8Q - T8T; | ||
|  | 			 T8Z = T8X + T8Y; | ||
|  | 			 T90 = FNMS(KP382683432, T8Z, KP923879532 * T8U); | ||
|  | 			 T9n = FMA(KP923879532, T8Z, KP382683432 * T8U); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T95, T9a, Tbr, Tbs; | ||
|  | 			 T95 = T93 + T94; | ||
|  | 			 T9a = T96 - T99; | ||
|  | 			 T9b = FMA(KP382683432, T95, KP923879532 * T9a); | ||
|  | 			 T9o = FNMS(KP382683432, T9a, KP923879532 * T95); | ||
|  | 			 Tbr = T96 + T99; | ||
|  | 			 Tbs = T93 - T94; | ||
|  | 			 Tbt = FNMS(KP382683432, Tbs, KP923879532 * Tbr); | ||
|  | 			 TbA = FMA(KP923879532, Tbs, KP382683432 * Tbr); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TdW, TdZ, Tbo, Tbp; | ||
|  | 			 TdW = T5R - T62; | ||
|  | 			 TdZ = TdX - TdY; | ||
|  | 			 Te0 = TdW + TdZ; | ||
|  | 			 Tee = TdZ - TdW; | ||
|  | 			 Tbo = T8X - T8Y; | ||
|  | 			 Tbp = T8Q + T8T; | ||
|  | 			 Tbq = FMA(KP382683432, Tbo, KP923879532 * Tbp); | ||
|  | 			 Tbz = FNMS(KP382683432, Tbp, KP923879532 * Tbo); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; | ||
|  | 		    E TgM; | ||
|  | 		    { | ||
|  | 			 E TH, T1s, TgI, TgJ; | ||
|  | 			 TH = Tj + TG; | ||
|  | 			 T1s = T14 + T1r; | ||
|  | 			 T1t = TH + T1s; | ||
|  | 			 Tgn = TH - T1s; | ||
|  | 			 TgI = Tgy + Tgz; | ||
|  | 			 TgJ = Tgt + Tgu; | ||
|  | 			 TgK = TgI - TgJ; | ||
|  | 			 TgL = TgJ + TgI; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TgN, TgU, T2e, T2Z; | ||
|  | 			 TgN = Tfr + Tfq; | ||
|  | 			 TgU = TgO + TgT; | ||
|  | 			 TgV = TgN + TgU; | ||
|  | 			 Th1 = TgU - TgN; | ||
|  | 			 T2e = T1Q + T2d; | ||
|  | 			 T2Z = T2B + T2Y; | ||
|  | 			 T30 = T2e + T2Z; | ||
|  | 			 Th0 = T2e - T2Z; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4y, T65, Tgs, Tgv; | ||
|  | 			 T4y = T3M + T4x; | ||
|  | 			 T65 = T5j + T64; | ||
|  | 			 T66 = T4y + T65; | ||
|  | 			 TgX = T65 - T4y; | ||
|  | 			 Tgs = T3M - T4x; | ||
|  | 			 Tgv = Tgt - Tgu; | ||
|  | 			 Tgw = Tgs + Tgv; | ||
|  | 			 TgE = Tgs - Tgv; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgx, TgA, Tgo, Tgp; | ||
|  | 			 Tgx = T5j - T64; | ||
|  | 			 TgA = Tgy - Tgz; | ||
|  | 			 TgB = Tgx - TgA; | ||
|  | 			 TgF = Tgx + TgA; | ||
|  | 			 Tgo = TfA + TfB; | ||
|  | 			 Tgp = Tfv + Tfw; | ||
|  | 			 Tgq = Tgo - Tgp; | ||
|  | 			 TgM = Tgp + Tgo; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T31, TgW, TgY, TgH; | ||
|  | 			 T31 = T1t + T30; | ||
|  | 			 ci[WS(rs, 31)] = T31 - T66; | ||
|  | 			 cr[0] = T31 + T66; | ||
|  | 			 TgW = TgM + TgV; | ||
|  | 			 cr[WS(rs, 32)] = TgL - TgW; | ||
|  | 			 ci[WS(rs, 63)] = TgL + TgW; | ||
|  | 			 TgY = TgV - TgM; | ||
|  | 			 cr[WS(rs, 48)] = TgX - TgY; | ||
|  | 			 ci[WS(rs, 47)] = TgX + TgY; | ||
|  | 			 TgH = T1t - T30; | ||
|  | 			 cr[WS(rs, 16)] = TgH - TgK; | ||
|  | 			 ci[WS(rs, 15)] = TgH + TgK; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgr, TgC, TgZ, Th2; | ||
|  | 			 Tgr = Tgn - Tgq; | ||
|  | 			 TgC = KP707106781 * (Tgw + TgB); | ||
|  | 			 ci[WS(rs, 23)] = Tgr - TgC; | ||
|  | 			 cr[WS(rs, 8)] = Tgr + TgC; | ||
|  | 			 TgZ = KP707106781 * (TgB - Tgw); | ||
|  | 			 Th2 = Th0 + Th1; | ||
|  | 			 cr[WS(rs, 56)] = TgZ - Th2; | ||
|  | 			 ci[WS(rs, 39)] = TgZ + Th2; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th3, Th4, TgD, TgG; | ||
|  | 			 Th3 = KP707106781 * (TgF - TgE); | ||
|  | 			 Th4 = Th1 - Th0; | ||
|  | 			 cr[WS(rs, 40)] = Th3 - Th4; | ||
|  | 			 ci[WS(rs, 55)] = Th3 + Th4; | ||
|  | 			 TgD = Tgn + Tgq; | ||
|  | 			 TgG = KP707106781 * (TgE + TgF); | ||
|  | 			 cr[WS(rs, 24)] = TgD - TgG; | ||
|  | 			 ci[WS(rs, 7)] = TgD + TgG; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6L, T9x, ThV, Ti1, T7E, Ti0, T9A, ThO, T8y, T9K, T9u, T9E, T9r, T9L, T9v; | ||
|  | 		    E T9H; | ||
|  | 		    { | ||
|  | 			 E T6n, T6K, ThP, ThU; | ||
|  | 			 T6n = T6b + T6m; | ||
|  | 			 T6K = T6y + T6J; | ||
|  | 			 T6L = T6n - T6K; | ||
|  | 			 T9x = T6n + T6K; | ||
|  | 			 ThP = T9O - T9P; | ||
|  | 			 ThU = ThQ + ThT; | ||
|  | 			 ThV = ThP + ThU; | ||
|  | 			 Ti1 = ThU - ThP; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7c, T9y, T7D, T9z; | ||
|  | 			 { | ||
|  | 			      E T72, T7b, T7t, T7C; | ||
|  | 			      T72 = T6Q + T71; | ||
|  | 			      T7b = T77 + T7a; | ||
|  | 			      T7c = FMA(KP195090322, T72, KP980785280 * T7b); | ||
|  | 			      T9y = FNMS(KP195090322, T7b, KP980785280 * T72); | ||
|  | 			      T7t = T7h + T7s; | ||
|  | 			      T7C = T7y + T7B; | ||
|  | 			      T7D = FNMS(KP980785280, T7C, KP195090322 * T7t); | ||
|  | 			      T9z = FMA(KP980785280, T7t, KP195090322 * T7C); | ||
|  | 			 } | ||
|  | 			 T7E = T7c + T7D; | ||
|  | 			 Ti0 = T9z - T9y; | ||
|  | 			 T9A = T9y + T9z; | ||
|  | 			 ThO = T7c - T7D; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T8k, T9D, T8x, T9C; | ||
|  | 			 { | ||
|  | 			      E T7W, T8j, T8t, T8w; | ||
|  | 			      T7W = T7K + T7V; | ||
|  | 			      T8j = T87 + T8i; | ||
|  | 			      T8k = T7W - T8j; | ||
|  | 			      T9D = T7W + T8j; | ||
|  | 			      T8t = T8p + T8s; | ||
|  | 			      T8w = T8u + T8v; | ||
|  | 			      T8x = T8t - T8w; | ||
|  | 			      T9C = T8t + T8w; | ||
|  | 			 } | ||
|  | 			 T8y = FMA(KP634393284, T8k, KP773010453 * T8x); | ||
|  | 			 T9K = FMA(KP995184726, T9D, KP098017140 * T9C); | ||
|  | 			 T9u = FNMS(KP773010453, T8k, KP634393284 * T8x); | ||
|  | 			 T9E = FNMS(KP098017140, T9D, KP995184726 * T9C); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9d, T9G, T9q, T9F; | ||
|  | 			 { | ||
|  | 			      E T8P, T9c, T9m, T9p; | ||
|  | 			      T8P = T8D + T8O; | ||
|  | 			      T9c = T90 + T9b; | ||
|  | 			      T9d = T8P - T9c; | ||
|  | 			      T9G = T8P + T9c; | ||
|  | 			      T9m = T9i + T9l; | ||
|  | 			      T9p = T9n + T9o; | ||
|  | 			      T9q = T9m - T9p; | ||
|  | 			      T9F = T9m + T9p; | ||
|  | 			 } | ||
|  | 			 T9r = FNMS(KP634393284, T9q, KP773010453 * T9d); | ||
|  | 			 T9L = FNMS(KP995184726, T9F, KP098017140 * T9G); | ||
|  | 			 T9v = FMA(KP773010453, T9q, KP634393284 * T9d); | ||
|  | 			 T9H = FMA(KP098017140, T9F, KP995184726 * T9G); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T7F, T9s, ThZ, Ti2; | ||
|  | 			 T7F = T6L + T7E; | ||
|  | 			 T9s = T8y + T9r; | ||
|  | 			 ci[WS(rs, 24)] = T7F - T9s; | ||
|  | 			 cr[WS(rs, 7)] = T7F + T9s; | ||
|  | 			 ThZ = T9v - T9u; | ||
|  | 			 Ti2 = Ti0 + Ti1; | ||
|  | 			 cr[WS(rs, 39)] = ThZ - Ti2; | ||
|  | 			 ci[WS(rs, 56)] = ThZ + Ti2; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ti3, Ti4, T9t, T9w; | ||
|  | 			 Ti3 = T9r - T8y; | ||
|  | 			 Ti4 = Ti1 - Ti0; | ||
|  | 			 cr[WS(rs, 55)] = Ti3 - Ti4; | ||
|  | 			 ci[WS(rs, 40)] = Ti3 + Ti4; | ||
|  | 			 T9t = T6L - T7E; | ||
|  | 			 T9w = T9u + T9v; | ||
|  | 			 cr[WS(rs, 23)] = T9t - T9w; | ||
|  | 			 ci[WS(rs, 8)] = T9t + T9w; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9B, T9I, ThN, ThW; | ||
|  | 			 T9B = T9x + T9A; | ||
|  | 			 T9I = T9E + T9H; | ||
|  | 			 cr[WS(rs, 31)] = T9B - T9I; | ||
|  | 			 ci[0] = T9B + T9I; | ||
|  | 			 ThN = T9L - T9K; | ||
|  | 			 ThW = ThO + ThV; | ||
|  | 			 cr[WS(rs, 63)] = ThN - ThW; | ||
|  | 			 ci[WS(rs, 32)] = ThN + ThW; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThX, ThY, T9J, T9M; | ||
|  | 			 ThX = T9H - T9E; | ||
|  | 			 ThY = ThV - ThO; | ||
|  | 			 cr[WS(rs, 47)] = ThX - ThY; | ||
|  | 			 ci[WS(rs, 48)] = ThX + ThY; | ||
|  | 			 T9J = T9x - T9A; | ||
|  | 			 T9M = T9K + T9L; | ||
|  | 			 ci[WS(rs, 16)] = T9J - T9M; | ||
|  | 			 cr[WS(rs, 15)] = T9J + T9M; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; | ||
|  | 		    E Tg5; | ||
|  | 		    { | ||
|  | 			 E Tfp, Tfs, Tgf, Tgg; | ||
|  | 			 Tfp = Tj - TG; | ||
|  | 			 Tfs = Tfq - Tfr; | ||
|  | 			 Tft = Tfp - Tfs; | ||
|  | 			 Tg7 = Tfp + Tfs; | ||
|  | 			 Tgf = TfY + TfZ; | ||
|  | 			 Tgg = TfR + TfU; | ||
|  | 			 Tgh = FMA(KP382683432, Tgf, KP923879532 * Tgg); | ||
|  | 			 Tgl = FNMS(KP923879532, Tgf, KP382683432 * Tgg); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Th7, Th8, Tfy, TfD; | ||
|  | 			 Th7 = T14 - T1r; | ||
|  | 			 Th8 = TgT - TgO; | ||
|  | 			 Th9 = Th7 + Th8; | ||
|  | 			 Thf = Th8 - Th7; | ||
|  | 			 Tfy = Tfu + Tfx; | ||
|  | 			 TfD = Tfz - TfC; | ||
|  | 			 TfE = KP707106781 * (Tfy + TfD); | ||
|  | 			 Th6 = KP707106781 * (Tfy - TfD); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfK, TfP, Tg8, Tg9; | ||
|  | 			 TfK = TfI - TfJ; | ||
|  | 			 TfP = TfL - TfO; | ||
|  | 			 TfQ = FMA(KP382683432, TfK, KP923879532 * TfP); | ||
|  | 			 Tg4 = FNMS(KP923879532, TfK, KP382683432 * TfP); | ||
|  | 			 Tg8 = Tfu - Tfx; | ||
|  | 			 Tg9 = Tfz + TfC; | ||
|  | 			 Tga = KP707106781 * (Tg8 + Tg9); | ||
|  | 			 The = KP707106781 * (Tg9 - Tg8); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgc, Tgd, TfV, Tg0; | ||
|  | 			 Tgc = TfL + TfO; | ||
|  | 			 Tgd = TfI + TfJ; | ||
|  | 			 Tge = FNMS(KP382683432, Tgd, KP923879532 * Tgc); | ||
|  | 			 Tgk = FMA(KP923879532, Tgd, KP382683432 * Tgc); | ||
|  | 			 TfV = TfR - TfU; | ||
|  | 			 Tg0 = TfY - TfZ; | ||
|  | 			 Tg1 = FNMS(KP382683432, Tg0, KP923879532 * TfV); | ||
|  | 			 Tg5 = FMA(KP923879532, Tg0, KP382683432 * TfV); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TfF, Tg2, Thd, Thg; | ||
|  | 			 TfF = Tft + TfE; | ||
|  | 			 Tg2 = TfQ + Tg1; | ||
|  | 			 ci[WS(rs, 27)] = TfF - Tg2; | ||
|  | 			 cr[WS(rs, 4)] = TfF + Tg2; | ||
|  | 			 Thd = Tg5 - Tg4; | ||
|  | 			 Thg = The + Thf; | ||
|  | 			 cr[WS(rs, 36)] = Thd - Thg; | ||
|  | 			 ci[WS(rs, 59)] = Thd + Thg; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thh, Thi, Tg3, Tg6; | ||
|  | 			 Thh = Tg1 - TfQ; | ||
|  | 			 Thi = Thf - The; | ||
|  | 			 cr[WS(rs, 52)] = Thh - Thi; | ||
|  | 			 ci[WS(rs, 43)] = Thh + Thi; | ||
|  | 			 Tg3 = Tft - TfE; | ||
|  | 			 Tg6 = Tg4 + Tg5; | ||
|  | 			 cr[WS(rs, 20)] = Tg3 - Tg6; | ||
|  | 			 ci[WS(rs, 11)] = Tg3 + Tg6; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tgb, Tgi, Th5, Tha; | ||
|  | 			 Tgb = Tg7 + Tga; | ||
|  | 			 Tgi = Tge + Tgh; | ||
|  | 			 cr[WS(rs, 28)] = Tgb - Tgi; | ||
|  | 			 ci[WS(rs, 3)] = Tgb + Tgi; | ||
|  | 			 Th5 = Tgl - Tgk; | ||
|  | 			 Tha = Th6 + Th9; | ||
|  | 			 cr[WS(rs, 60)] = Th5 - Tha; | ||
|  | 			 ci[WS(rs, 35)] = Th5 + Tha; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thb, Thc, Tgj, Tgm; | ||
|  | 			 Thb = Tgh - Tge; | ||
|  | 			 Thc = Th9 - Th6; | ||
|  | 			 cr[WS(rs, 44)] = Thb - Thc; | ||
|  | 			 ci[WS(rs, 51)] = Thb + Thc; | ||
|  | 			 Tgj = Tg7 - Tga; | ||
|  | 			 Tgm = Tgk + Tgl; | ||
|  | 			 ci[WS(rs, 19)] = Tgj - Tgm; | ||
|  | 			 cr[WS(rs, 12)] = Tgj + Tgm; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; | ||
|  | 		    E Tfg; | ||
|  | 		    { | ||
|  | 			 E TeD, TeG, Tfa, Tfb; | ||
|  | 			 TeD = TcL + TcO; | ||
|  | 			 TeG = KP707106781 * (TeE + TeF); | ||
|  | 			 TeH = TeD - TeG; | ||
|  | 			 Tf9 = TeD + TeG; | ||
|  | 			 { | ||
|  | 			      E TeK, TeN, Thl, Tho; | ||
|  | 			      TeK = FMA(KP923879532, TeI, KP382683432 * TeJ); | ||
|  | 			      TeN = FNMS(KP923879532, TeM, KP382683432 * TeL); | ||
|  | 			      TeO = TeK + TeN; | ||
|  | 			      Thk = TeK - TeN; | ||
|  | 			      Thl = KP707106781 * (TcU - TcZ); | ||
|  | 			      Tho = Thm + Thn; | ||
|  | 			      Thp = Thl + Tho; | ||
|  | 			      Thv = Tho - Thl; | ||
|  | 			 } | ||
|  | 			 Tfa = FNMS(KP382683432, TeI, KP923879532 * TeJ); | ||
|  | 			 Tfb = FMA(KP382683432, TeM, KP923879532 * TeL); | ||
|  | 			 Tfc = Tfa + Tfb; | ||
|  | 			 Thu = Tfb - Tfa; | ||
|  | 			 { | ||
|  | 			      E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; | ||
|  | 			      TeY = KP707106781 * (Te5 + Te0); | ||
|  | 			      TeZ = TeX - TeY; | ||
|  | 			      Tfh = TeX + TeY; | ||
|  | 			      Tf1 = KP707106781 * (Ted + Tee); | ||
|  | 			      Tf2 = Tf0 - Tf1; | ||
|  | 			      Tfi = Tf0 + Tf1; | ||
|  | 			      Tf3 = FNMS(KP555570233, Tf2, KP831469612 * TeZ); | ||
|  | 			      Tfn = FMA(KP980785280, Tfh, KP195090322 * Tfi); | ||
|  | 			      Tf7 = FMA(KP555570233, TeZ, KP831469612 * Tf2); | ||
|  | 			      Tfj = FNMS(KP980785280, Tfi, KP195090322 * Tfh); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TeS, Tfe, TeV, Tff, TeR, TeU; | ||
|  | 			      TeR = KP707106781 * (TdN + TdM); | ||
|  | 			      TeS = TeQ - TeR; | ||
|  | 			      Tfe = TeQ + TeR; | ||
|  | 			      TeU = KP707106781 * (Tdz + TdE); | ||
|  | 			      TeV = TeT - TeU; | ||
|  | 			      Tff = TeT + TeU; | ||
|  | 			      TeW = FMA(KP831469612, TeS, KP555570233 * TeV); | ||
|  | 			      Tfm = FNMS(KP195090322, Tff, KP980785280 * Tfe); | ||
|  | 			      Tf6 = FNMS(KP831469612, TeV, KP555570233 * TeS); | ||
|  | 			      Tfg = FMA(KP195090322, Tfe, KP980785280 * Tff); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TeP, Tf4, Tht, Thw; | ||
|  | 			 TeP = TeH + TeO; | ||
|  | 			 Tf4 = TeW + Tf3; | ||
|  | 			 ci[WS(rs, 25)] = TeP - Tf4; | ||
|  | 			 cr[WS(rs, 6)] = TeP + Tf4; | ||
|  | 			 Tht = Tf7 - Tf6; | ||
|  | 			 Thw = Thu + Thv; | ||
|  | 			 cr[WS(rs, 38)] = Tht - Thw; | ||
|  | 			 ci[WS(rs, 57)] = Tht + Thw; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thx, Thy, Tf5, Tf8; | ||
|  | 			 Thx = Tf3 - TeW; | ||
|  | 			 Thy = Thv - Thu; | ||
|  | 			 cr[WS(rs, 54)] = Thx - Thy; | ||
|  | 			 ci[WS(rs, 41)] = Thx + Thy; | ||
|  | 			 Tf5 = TeH - TeO; | ||
|  | 			 Tf8 = Tf6 + Tf7; | ||
|  | 			 cr[WS(rs, 22)] = Tf5 - Tf8; | ||
|  | 			 ci[WS(rs, 9)] = Tf5 + Tf8; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tfd, Tfk, Thj, Thq; | ||
|  | 			 Tfd = Tf9 - Tfc; | ||
|  | 			 Tfk = Tfg + Tfj; | ||
|  | 			 ci[WS(rs, 17)] = Tfd - Tfk; | ||
|  | 			 cr[WS(rs, 14)] = Tfd + Tfk; | ||
|  | 			 Thj = Tfj - Tfg; | ||
|  | 			 Thq = Thk + Thp; | ||
|  | 			 cr[WS(rs, 62)] = Thj - Thq; | ||
|  | 			 ci[WS(rs, 33)] = Thj + Thq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Thr, Ths, Tfl, Tfo; | ||
|  | 			 Thr = Tfn - Tfm; | ||
|  | 			 Ths = Thp - Thk; | ||
|  | 			 cr[WS(rs, 46)] = Thr - Ths; | ||
|  | 			 ci[WS(rs, 49)] = Thr + Ths; | ||
|  | 			 Tfl = Tf9 + Tfc; | ||
|  | 			 Tfo = Tfm + Tfn; | ||
|  | 			 cr[WS(rs, 30)] = Tfl - Tfo; | ||
|  | 			 ci[WS(rs, 1)] = Tfl + Tfo; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; | ||
|  | 		    E Teu; | ||
|  | 		    { | ||
|  | 			 E TcP, Td0, Teo, Tep; | ||
|  | 			 TcP = TcL - TcO; | ||
|  | 			 Td0 = KP707106781 * (TcU + TcZ); | ||
|  | 			 Td1 = TcP - Td0; | ||
|  | 			 Ten = TcP + Td0; | ||
|  | 			 { | ||
|  | 			      E Tdc, Tdn, ThB, ThC; | ||
|  | 			      Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); | ||
|  | 			      Tdn = FMA(KP923879532, Tdh, KP382683432 * Tdm); | ||
|  | 			      Tdo = Tdc + Tdn; | ||
|  | 			      ThA = Tdn - Tdc; | ||
|  | 			      ThB = KP707106781 * (TeF - TeE); | ||
|  | 			      ThC = Thn - Thm; | ||
|  | 			      ThD = ThB + ThC; | ||
|  | 			      ThJ = ThC - ThB; | ||
|  | 			 } | ||
|  | 			 Teo = FMA(KP382683432, Tdb, KP923879532 * Td6); | ||
|  | 			 Tep = FNMS(KP382683432, Tdh, KP923879532 * Tdm); | ||
|  | 			 Teq = Teo + Tep; | ||
|  | 			 ThI = Teo - Tep; | ||
|  | 			 { | ||
|  | 			      E Te7, Tew, Teg, Tev, Te6, Tef; | ||
|  | 			      Te6 = KP707106781 * (Te0 - Te5); | ||
|  | 			      Te7 = TdV - Te6; | ||
|  | 			      Tew = TdV + Te6; | ||
|  | 			      Tef = KP707106781 * (Ted - Tee); | ||
|  | 			      Teg = Tec - Tef; | ||
|  | 			      Tev = Tec + Tef; | ||
|  | 			      Teh = FMA(KP555570233, Te7, KP831469612 * Teg); | ||
|  | 			      TeB = FMA(KP980785280, Tew, KP195090322 * Tev); | ||
|  | 			      Tel = FNMS(KP831469612, Te7, KP555570233 * Teg); | ||
|  | 			      Tex = FNMS(KP195090322, Tew, KP980785280 * Tev); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E TdG, Tet, TdP, Tes, TdF, TdO; | ||
|  | 			      TdF = KP707106781 * (Tdz - TdE); | ||
|  | 			      TdG = Tdu - TdF; | ||
|  | 			      Tet = Tdu + TdF; | ||
|  | 			      TdO = KP707106781 * (TdM - TdN); | ||
|  | 			      TdP = TdL - TdO; | ||
|  | 			      Tes = TdL + TdO; | ||
|  | 			      TdQ = FNMS(KP555570233, TdP, KP831469612 * TdG); | ||
|  | 			      TeA = FNMS(KP980785280, Tes, KP195090322 * Tet); | ||
|  | 			      Tek = FMA(KP831469612, TdP, KP555570233 * TdG); | ||
|  | 			      Teu = FMA(KP195090322, Tes, KP980785280 * Tet); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tdp, Tei, ThH, ThK; | ||
|  | 			 Tdp = Td1 + Tdo; | ||
|  | 			 Tei = TdQ + Teh; | ||
|  | 			 cr[WS(rs, 26)] = Tdp - Tei; | ||
|  | 			 ci[WS(rs, 5)] = Tdp + Tei; | ||
|  | 			 ThH = Tel - Tek; | ||
|  | 			 ThK = ThI + ThJ; | ||
|  | 			 cr[WS(rs, 58)] = ThH - ThK; | ||
|  | 			 ci[WS(rs, 37)] = ThH + ThK; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThL, ThM, Tej, Tem; | ||
|  | 			 ThL = Teh - TdQ; | ||
|  | 			 ThM = ThJ - ThI; | ||
|  | 			 cr[WS(rs, 42)] = ThL - ThM; | ||
|  | 			 ci[WS(rs, 53)] = ThL + ThM; | ||
|  | 			 Tej = Td1 - Tdo; | ||
|  | 			 Tem = Tek + Tel; | ||
|  | 			 ci[WS(rs, 21)] = Tej - Tem; | ||
|  | 			 cr[WS(rs, 10)] = Tej + Tem; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ter, Tey, Thz, ThE; | ||
|  | 			 Ter = Ten + Teq; | ||
|  | 			 Tey = Teu + Tex; | ||
|  | 			 ci[WS(rs, 29)] = Ter - Tey; | ||
|  | 			 cr[WS(rs, 2)] = Ter + Tey; | ||
|  | 			 Thz = TeB - TeA; | ||
|  | 			 ThE = ThA + ThD; | ||
|  | 			 cr[WS(rs, 34)] = Thz - ThE; | ||
|  | 			 ci[WS(rs, 61)] = Thz + ThE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E ThF, ThG, Tez, TeC; | ||
|  | 			 ThF = Tex - Teu; | ||
|  | 			 ThG = ThD - ThA; | ||
|  | 			 cr[WS(rs, 50)] = ThF - ThG; | ||
|  | 			 ci[WS(rs, 45)] = ThF + ThG; | ||
|  | 			 Tez = Ten - Teq; | ||
|  | 			 TeC = TeA + TeB; | ||
|  | 			 cr[WS(rs, 18)] = Tez - TeC; | ||
|  | 			 ci[WS(rs, 13)] = Tez + TeC; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tc3, Tcv, TiD, TiJ, Tca, TiI, Tcy, TiA, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; | ||
|  | 		    E TcF; | ||
|  | 		    { | ||
|  | 			 E TbZ, Tc2, TiB, TiC; | ||
|  | 			 TbZ = Taz - TaC; | ||
|  | 			 Tc2 = Tc0 + Tc1; | ||
|  | 			 Tc3 = TbZ - Tc2; | ||
|  | 			 Tcv = TbZ + Tc2; | ||
|  | 			 TiB = TaG - TaJ; | ||
|  | 			 TiC = Tin - Tim; | ||
|  | 			 TiD = TiB + TiC; | ||
|  | 			 TiJ = TiC - TiB; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tc6, Tcw, Tc9, Tcx; | ||
|  | 			 { | ||
|  | 			      E Tc4, Tc5, Tc7, Tc8; | ||
|  | 			      Tc4 = TaP - TaQ; | ||
|  | 			      Tc5 = TaM - TaN; | ||
|  | 			      Tc6 = FMA(KP831469612, Tc4, KP555570233 * Tc5); | ||
|  | 			      Tcw = FNMS(KP555570233, Tc4, KP831469612 * Tc5); | ||
|  | 			      Tc7 = TaW - TaX; | ||
|  | 			      Tc8 = TaT - TaU; | ||
|  | 			      Tc9 = FNMS(KP831469612, Tc8, KP555570233 * Tc7); | ||
|  | 			      Tcx = FMA(KP555570233, Tc8, KP831469612 * Tc7); | ||
|  | 			 } | ||
|  | 			 Tca = Tc6 + Tc9; | ||
|  | 			 TiI = Tcx - Tcw; | ||
|  | 			 Tcy = Tcw + Tcx; | ||
|  | 			 TiA = Tc6 - Tc9; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tce, TcB, Tch, TcA; | ||
|  | 			 { | ||
|  | 			      E Tcc, Tcd, Tcf, Tcg; | ||
|  | 			      Tcc = Tbd - Tbe; | ||
|  | 			      Tcd = Tb7 - Tba; | ||
|  | 			      Tce = Tcc - Tcd; | ||
|  | 			      TcB = Tcc + Tcd; | ||
|  | 			      Tcf = Tb2 - Tb3; | ||
|  | 			      Tcg = Tbh - Tbg; | ||
|  | 			      Tch = Tcf - Tcg; | ||
|  | 			      TcA = Tcf + Tcg; | ||
|  | 			 } | ||
|  | 			 Tci = FMA(KP471396736, Tce, KP881921264 * Tch); | ||
|  | 			 TcI = FMA(KP956940335, TcB, KP290284677 * TcA); | ||
|  | 			 Tcs = FNMS(KP881921264, Tce, KP471396736 * Tch); | ||
|  | 			 TcC = FNMS(KP290284677, TcB, KP956940335 * TcA); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcl, TcE, Tco, TcD; | ||
|  | 			 { | ||
|  | 			      E Tcj, Tck, Tcm, Tcn; | ||
|  | 			      Tcj = Tbl - Tbm; | ||
|  | 			      Tck = TbA - Tbz; | ||
|  | 			      Tcl = Tcj - Tck; | ||
|  | 			      TcE = Tcj + Tck; | ||
|  | 			      Tcm = Tbw - Tbx; | ||
|  | 			      Tcn = Tbq - Tbt; | ||
|  | 			      Tco = Tcm - Tcn; | ||
|  | 			      TcD = Tcm + Tcn; | ||
|  | 			 } | ||
|  | 			 Tcp = FNMS(KP471396736, Tco, KP881921264 * Tcl); | ||
|  | 			 TcJ = FNMS(KP956940335, TcD, KP290284677 * TcE); | ||
|  | 			 Tct = FMA(KP881921264, Tco, KP471396736 * Tcl); | ||
|  | 			 TcF = FMA(KP290284677, TcD, KP956940335 * TcE); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcb, Tcq, TiH, TiK; | ||
|  | 			 Tcb = Tc3 + Tca; | ||
|  | 			 Tcq = Tci + Tcp; | ||
|  | 			 ci[WS(rs, 26)] = Tcb - Tcq; | ||
|  | 			 cr[WS(rs, 5)] = Tcb + Tcq; | ||
|  | 			 TiH = Tct - Tcs; | ||
|  | 			 TiK = TiI + TiJ; | ||
|  | 			 cr[WS(rs, 37)] = TiH - TiK; | ||
|  | 			 ci[WS(rs, 58)] = TiH + TiK; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiL, TiM, Tcr, Tcu; | ||
|  | 			 TiL = Tcp - Tci; | ||
|  | 			 TiM = TiJ - TiI; | ||
|  | 			 cr[WS(rs, 53)] = TiL - TiM; | ||
|  | 			 ci[WS(rs, 42)] = TiL + TiM; | ||
|  | 			 Tcr = Tc3 - Tca; | ||
|  | 			 Tcu = Tcs + Tct; | ||
|  | 			 cr[WS(rs, 21)] = Tcr - Tcu; | ||
|  | 			 ci[WS(rs, 10)] = Tcr + Tcu; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tcz, TcG, Tiz, TiE; | ||
|  | 			 Tcz = Tcv + Tcy; | ||
|  | 			 TcG = TcC + TcF; | ||
|  | 			 cr[WS(rs, 29)] = Tcz - TcG; | ||
|  | 			 ci[WS(rs, 2)] = Tcz + TcG; | ||
|  | 			 Tiz = TcJ - TcI; | ||
|  | 			 TiE = TiA + TiD; | ||
|  | 			 cr[WS(rs, 61)] = Tiz - TiE; | ||
|  | 			 ci[WS(rs, 34)] = Tiz + TiE; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TiF, TiG, TcH, TcK; | ||
|  | 			 TiF = TcF - TcC; | ||
|  | 			 TiG = TiD - TiA; | ||
|  | 			 cr[WS(rs, 45)] = TiF - TiG; | ||
|  | 			 ci[WS(rs, 50)] = TiF + TiG; | ||
|  | 			 TcH = Tcv - Tcy; | ||
|  | 			 TcK = TcI + TcJ; | ||
|  | 			 ci[WS(rs, 18)] = TcH - TcK; | ||
|  | 			 cr[WS(rs, 13)] = TcH + TcK; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TaL, TbJ, Tip, Tiv, Tb0, Tiu, TbM, Tik, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; | ||
|  | 		    E TbT; | ||
|  | 		    { | ||
|  | 			 E TaD, TaK, Til, Tio; | ||
|  | 			 TaD = Taz + TaC; | ||
|  | 			 TaK = TaG + TaJ; | ||
|  | 			 TaL = TaD - TaK; | ||
|  | 			 TbJ = TaD + TaK; | ||
|  | 			 Til = Tc1 - Tc0; | ||
|  | 			 Tio = Tim + Tin; | ||
|  | 			 Tip = Til + Tio; | ||
|  | 			 Tiv = Tio - Til; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TaS, TbK, TaZ, TbL; | ||
|  | 			 { | ||
|  | 			      E TaO, TaR, TaV, TaY; | ||
|  | 			      TaO = TaM + TaN; | ||
|  | 			      TaR = TaP + TaQ; | ||
|  | 			      TaS = FNMS(KP980785280, TaR, KP195090322 * TaO); | ||
|  | 			      TbK = FMA(KP195090322, TaR, KP980785280 * TaO); | ||
|  | 			      TaV = TaT + TaU; | ||
|  | 			      TaY = TaW + TaX; | ||
|  | 			      TaZ = FMA(KP980785280, TaV, KP195090322 * TaY); | ||
|  | 			      TbL = FNMS(KP195090322, TaV, KP980785280 * TaY); | ||
|  | 			 } | ||
|  | 			 Tb0 = TaS + TaZ; | ||
|  | 			 Tiu = TbK - TbL; | ||
|  | 			 TbM = TbK + TbL; | ||
|  | 			 Tik = TaZ - TaS; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbc, TbO, Tbj, TbP; | ||
|  | 			 { | ||
|  | 			      E Tb4, Tbb, Tbf, Tbi; | ||
|  | 			      Tb4 = Tb2 + Tb3; | ||
|  | 			      Tbb = Tb7 + Tba; | ||
|  | 			      Tbc = Tb4 - Tbb; | ||
|  | 			      TbO = Tb4 + Tbb; | ||
|  | 			      Tbf = Tbd + Tbe; | ||
|  | 			      Tbi = Tbg + Tbh; | ||
|  | 			      Tbj = Tbf - Tbi; | ||
|  | 			      TbP = Tbf + Tbi; | ||
|  | 			 } | ||
|  | 			 Tbk = FMA(KP634393284, Tbc, KP773010453 * Tbj); | ||
|  | 			 TbW = FNMS(KP995184726, TbP, KP098017140 * TbO); | ||
|  | 			 TbG = FNMS(KP634393284, Tbj, KP773010453 * Tbc); | ||
|  | 			 TbQ = FMA(KP995184726, TbO, KP098017140 * TbP); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tbv, TbR, TbC, TbS; | ||
|  | 			 { | ||
|  | 			      E Tbn, Tbu, Tby, TbB; | ||
|  | 			      Tbn = Tbl + Tbm; | ||
|  | 			      Tbu = Tbq + Tbt; | ||
|  | 			      Tbv = Tbn - Tbu; | ||
|  | 			      TbR = Tbn + Tbu; | ||
|  | 			      Tby = Tbw + Tbx; | ||
|  | 			      TbB = Tbz + TbA; | ||
|  | 			      TbC = Tby - TbB; | ||
|  | 			      TbS = Tby + TbB; | ||
|  | 			 } | ||
|  | 			 TbD = FNMS(KP773010453, TbC, KP634393284 * Tbv); | ||
|  | 			 TbX = FMA(KP098017140, TbR, KP995184726 * TbS); | ||
|  | 			 TbH = FMA(KP773010453, Tbv, KP634393284 * TbC); | ||
|  | 			 TbT = FNMS(KP098017140, TbS, KP995184726 * TbR); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tb1, TbE, Tit, Tiw; | ||
|  | 			 Tb1 = TaL - Tb0; | ||
|  | 			 TbE = Tbk + TbD; | ||
|  | 			 ci[WS(rs, 22)] = Tb1 - TbE; | ||
|  | 			 cr[WS(rs, 9)] = Tb1 + TbE; | ||
|  | 			 Tit = TbD - Tbk; | ||
|  | 			 Tiw = Tiu + Tiv; | ||
|  | 			 cr[WS(rs, 57)] = Tit - Tiw; | ||
|  | 			 ci[WS(rs, 38)] = Tit + Tiw; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tix, Tiy, TbF, TbI; | ||
|  | 			 Tix = TbH - TbG; | ||
|  | 			 Tiy = Tiv - Tiu; | ||
|  | 			 cr[WS(rs, 41)] = Tix - Tiy; | ||
|  | 			 ci[WS(rs, 54)] = Tix + Tiy; | ||
|  | 			 TbF = TaL + Tb0; | ||
|  | 			 TbI = TbG + TbH; | ||
|  | 			 cr[WS(rs, 25)] = TbF - TbI; | ||
|  | 			 ci[WS(rs, 6)] = TbF + TbI; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E TbN, TbU, Tij, Tiq; | ||
|  | 			 TbN = TbJ + TbM; | ||
|  | 			 TbU = TbQ + TbT; | ||
|  | 			 ci[WS(rs, 30)] = TbN - TbU; | ||
|  | 			 cr[WS(rs, 1)] = TbN + TbU; | ||
|  | 			 Tij = TbX - TbW; | ||
|  | 			 Tiq = Tik + Tip; | ||
|  | 			 cr[WS(rs, 33)] = Tij - Tiq; | ||
|  | 			 ci[WS(rs, 62)] = Tij + Tiq; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tir, Tis, TbV, TbY; | ||
|  | 			 Tir = TbT - TbQ; | ||
|  | 			 Tis = Tip - Tik; | ||
|  | 			 cr[WS(rs, 49)] = Tir - Tis; | ||
|  | 			 ci[WS(rs, 46)] = Tir + Tis; | ||
|  | 			 TbV = TbJ - TbM; | ||
|  | 			 TbY = TbW + TbX; | ||
|  | 			 cr[WS(rs, 17)] = TbV - TbY; | ||
|  | 			 ci[WS(rs, 14)] = TbV + TbY; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9R, Taj, Ti9, Tif, T9Y, Tie, Tam, Ti6, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; | ||
|  | 		    E Tat; | ||
|  | 		    { | ||
|  | 			 E T9N, T9Q, Ti7, Ti8; | ||
|  | 			 T9N = T6b - T6m; | ||
|  | 			 T9Q = T9O + T9P; | ||
|  | 			 T9R = T9N - T9Q; | ||
|  | 			 Taj = T9N + T9Q; | ||
|  | 			 Ti7 = T6J - T6y; | ||
|  | 			 Ti8 = ThT - ThQ; | ||
|  | 			 Ti9 = Ti7 + Ti8; | ||
|  | 			 Tif = Ti8 - Ti7; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9U, Tak, T9X, Tal; | ||
|  | 			 { | ||
|  | 			      E T9S, T9T, T9V, T9W; | ||
|  | 			      T9S = T6Q - T71; | ||
|  | 			      T9T = T77 - T7a; | ||
|  | 			      T9U = FNMS(KP831469612, T9T, KP555570233 * T9S); | ||
|  | 			      Tak = FMA(KP831469612, T9S, KP555570233 * T9T); | ||
|  | 			      T9V = T7h - T7s; | ||
|  | 			      T9W = T7y - T7B; | ||
|  | 			      T9X = FMA(KP555570233, T9V, KP831469612 * T9W); | ||
|  | 			      Tal = FNMS(KP555570233, T9W, KP831469612 * T9V); | ||
|  | 			 } | ||
|  | 			 T9Y = T9U + T9X; | ||
|  | 			 Tie = Tak - Tal; | ||
|  | 			 Tam = Tak + Tal; | ||
|  | 			 Ti6 = T9X - T9U; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta2, Tao, Ta5, Tap; | ||
|  | 			 { | ||
|  | 			      E Ta0, Ta1, Ta3, Ta4; | ||
|  | 			      Ta0 = T8p - T8s; | ||
|  | 			      Ta1 = T87 - T8i; | ||
|  | 			      Ta2 = Ta0 - Ta1; | ||
|  | 			      Tao = Ta0 + Ta1; | ||
|  | 			      Ta3 = T7K - T7V; | ||
|  | 			      Ta4 = T8v - T8u; | ||
|  | 			      Ta5 = Ta3 - Ta4; | ||
|  | 			      Tap = Ta3 + Ta4; | ||
|  | 			 } | ||
|  | 			 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); | ||
|  | 			 Taw = FNMS(KP956940335, Tap, KP290284677 * Tao); | ||
|  | 			 Tag = FNMS(KP471396736, Ta5, KP881921264 * Ta2); | ||
|  | 			 Taq = FMA(KP956940335, Tao, KP290284677 * Tap); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Ta9, Tar, Tac, Tas; | ||
|  | 			 { | ||
|  | 			      E Ta7, Ta8, Taa, Tab; | ||
|  | 			      Ta7 = T8D - T8O; | ||
|  | 			      Ta8 = T9n - T9o; | ||
|  | 			      Ta9 = Ta7 - Ta8; | ||
|  | 			      Tar = Ta7 + Ta8; | ||
|  | 			      Taa = T9i - T9l; | ||
|  | 			      Tab = T9b - T90; | ||
|  | 			      Tac = Taa - Tab; | ||
|  | 			      Tas = Taa + Tab; | ||
|  | 			 } | ||
|  | 			 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); | ||
|  | 			 Tax = FMA(KP290284677, Tar, KP956940335 * Tas); | ||
|  | 			 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); | ||
|  | 			 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T9Z, Tae, Tid, Tig; | ||
|  | 			 T9Z = T9R - T9Y; | ||
|  | 			 Tae = Ta6 + Tad; | ||
|  | 			 ci[WS(rs, 20)] = T9Z - Tae; | ||
|  | 			 cr[WS(rs, 11)] = T9Z + Tae; | ||
|  | 			 Tid = Tad - Ta6; | ||
|  | 			 Tig = Tie + Tif; | ||
|  | 			 cr[WS(rs, 59)] = Tid - Tig; | ||
|  | 			 ci[WS(rs, 36)] = Tid + Tig; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tih, Tii, Taf, Tai; | ||
|  | 			 Tih = Tah - Tag; | ||
|  | 			 Tii = Tif - Tie; | ||
|  | 			 cr[WS(rs, 43)] = Tih - Tii; | ||
|  | 			 ci[WS(rs, 52)] = Tih + Tii; | ||
|  | 			 Taf = T9R + T9Y; | ||
|  | 			 Tai = Tag + Tah; | ||
|  | 			 cr[WS(rs, 27)] = Taf - Tai; | ||
|  | 			 ci[WS(rs, 4)] = Taf + Tai; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tan, Tau, Ti5, Tia; | ||
|  | 			 Tan = Taj + Tam; | ||
|  | 			 Tau = Taq + Tat; | ||
|  | 			 ci[WS(rs, 28)] = Tan - Tau; | ||
|  | 			 cr[WS(rs, 3)] = Tan + Tau; | ||
|  | 			 Ti5 = Tax - Taw; | ||
|  | 			 Tia = Ti6 + Ti9; | ||
|  | 			 cr[WS(rs, 35)] = Ti5 - Tia; | ||
|  | 			 ci[WS(rs, 60)] = Ti5 + Tia; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Tib, Tic, Tav, Tay; | ||
|  | 			 Tib = Tat - Taq; | ||
|  | 			 Tic = Ti9 - Ti6; | ||
|  | 			 cr[WS(rs, 51)] = Tib - Tic; | ||
|  | 			 ci[WS(rs, 44)] = Tib + Tic; | ||
|  | 			 Tav = Taj - Tam; | ||
|  | 			 Tay = Taw + Tax; | ||
|  | 			 cr[WS(rs, 19)] = Tav - Tay; | ||
|  | 			 ci[WS(rs, 12)] = Tav + Tay; | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 64 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, { 808, 270, 230, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hf_64) (planner *p) { | ||
|  |      X(khc2hc_register) (p, hf_64, &desc); | ||
|  | } | ||
|  | #endif
 |