256 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			256 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:03 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 46 FP additions, 38 FP multiplications, | ||
|  |  * (or, 12 additions, 4 multiplications, 34 fused multiply/add), | ||
|  |  * 50 stack variables, 19 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n1b.h"
 | ||
|  | 
 | ||
|  | static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | ||
|  |      DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | ||
|  |      DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | ||
|  |      DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | ||
|  |      DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | ||
|  |      DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | ||
|  |      DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | ||
|  |      DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | ||
|  |      DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | ||
|  |      DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | ||
|  |      DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | ||
|  |      DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | ||
|  |      DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ii; | ||
|  | 	  xo = io; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | ||
|  | 	       V T5, TF, Tp, Te, Td, TG, TH, Ta, Tm, Tu, Tr, Th, Ti, Tv, Ts; | ||
|  | 	       V TK, TI, TJ; | ||
|  | 	       { | ||
|  | 		    V T1, T2, T3, T4; | ||
|  | 		    T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 		    T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | ||
|  | 		    T4 = VADD(T2, T3); | ||
|  | 		    T5 = VFNMS(LDK(KP500000000), T4, T1); | ||
|  | 		    TF = VADD(T1, T4); | ||
|  | 		    Tp = VSUB(T2, T3); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T6, Tf, T9, Tg; | ||
|  | 		    T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 		    Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    { | ||
|  | 			 V T7, T8, Tb, Tc; | ||
|  | 			 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | ||
|  | 			 T9 = VADD(T7, T8); | ||
|  | 			 Te = VSUB(T8, T7); | ||
|  | 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 			 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 			 Td = VSUB(Tb, Tc); | ||
|  | 			 Tg = VADD(Tb, Tc); | ||
|  | 		    } | ||
|  | 		    TG = VADD(Tf, Tg); | ||
|  | 		    TH = VADD(T6, T9); | ||
|  | 		    Ta = VFNMS(LDK(KP500000000), T9, T6); | ||
|  | 		    Tm = VFNMS(LDK(KP439692620), Td, Ta); | ||
|  | 		    Tu = VFMA(LDK(KP203604859), Ta, Te); | ||
|  | 		    Tr = VFNMS(LDK(KP152703644), Te, Ta); | ||
|  | 		    Th = VFNMS(LDK(KP500000000), Tg, Tf); | ||
|  | 		    Ti = VFNMS(LDK(KP586256827), Th, Te); | ||
|  | 		    Tv = VFNMS(LDK(KP726681596), Td, Th); | ||
|  | 		    Ts = VFMA(LDK(KP968908795), Th, Td); | ||
|  | 	       } | ||
|  | 	       TK = VMUL(LDK(KP866025403), VSUB(TG, TH)); | ||
|  | 	       TI = VADD(TG, TH); | ||
|  | 	       TJ = VFNMS(LDK(KP500000000), TI, TF); | ||
|  | 	       ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0])); | ||
|  | 	       ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0])); | ||
|  | 	       { | ||
|  | 		    V Tk, To, Tj, Tn, Tl, Tq; | ||
|  | 		    Tj = VFNMS(LDK(KP347296355), Ti, Td); | ||
|  | 		    Tk = VFNMS(LDK(KP907603734), Tj, Ta); | ||
|  | 		    Tn = VFNMS(LDK(KP420276625), Tm, Te); | ||
|  | 		    To = VFNMS(LDK(KP826351822), Tn, Th); | ||
|  | 		    Tl = VFNMS(LDK(KP939692620), Tk, T5); | ||
|  | 		    Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To)); | ||
|  | 		    ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tx, TD, TB, TE, Ty, TC; | ||
|  | 		    { | ||
|  | 			 V Tt, Tw, Tz, TA; | ||
|  | 			 Tt = VFNMS(LDK(KP673648177), Ts, Tr); | ||
|  | 			 Tw = VFMA(LDK(KP898197570), Tv, Tu); | ||
|  | 			 Tx = VFNMS(LDK(KP500000000), Tw, Tt); | ||
|  | 			 TD = VFMA(LDK(KP852868531), Tw, T5); | ||
|  | 			 Tz = VFNMS(LDK(KP898197570), Tv, Tu); | ||
|  | 			 TA = VFMA(LDK(KP673648177), Ts, Tr); | ||
|  | 			 TB = VFMA(LDK(KP666666666), TA, Tz); | ||
|  | 			 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA)); | ||
|  | 		    } | ||
|  | 		    ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); | ||
|  | 		    Ty = VFMA(LDK(KP852868531), Tx, T5); | ||
|  | 		    TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp)); | ||
|  | 		    ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), { 12, 4, 34, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include dft/simd/n1b.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 46 FP additions, 26 FP multiplications, | ||
|  |  * (or, 30 additions, 10 multiplications, 16 fused multiply/add), | ||
|  |  * 41 stack variables, 14 constants, and 18 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/n1b.h"
 | ||
|  | 
 | ||
|  | static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | ||
|  |      DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | ||
|  |      DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | ||
|  |      DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | ||
|  |      DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | ||
|  |      DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | ||
|  |      DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | ||
|  |      DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | ||
|  |      DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | ||
|  |      DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | ||
|  |      DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | ||
|  |      DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | ||
|  |      DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  const R *xi; | ||
|  | 	  R *xo; | ||
|  | 	  xi = ii; | ||
|  | 	  xo = io; | ||
|  | 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | ||
|  | 	       V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn; | ||
|  | 	       { | ||
|  | 		    V T1, T2, T3, T4; | ||
|  | 		    T1 = LD(&(xi[0]), ivs, &(xi[0])); | ||
|  | 		    T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | ||
|  | 		    T4 = VADD(T2, T3); | ||
|  | 		    T5 = VFNMS(LDK(KP500000000), T4, T1); | ||
|  | 		    Ty = VADD(T1, T4); | ||
|  | 		    Tm = VMUL(LDK(KP866025403), VSUB(T2, T3)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Td, Tg, Te, Tf; | ||
|  | 		    Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | ||
|  | 		    Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | ||
|  | 		    Tg = VADD(Te, Tf); | ||
|  | 		    Ti = VSUB(Te, Tf); | ||
|  | 		    Tw = VADD(Td, Tg); | ||
|  | 		    Th = VFNMS(LDK(KP500000000), Tg, Td); | ||
|  | 		    Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th)); | ||
|  | 		    To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T6, T9, T7, T8; | ||
|  | 		    T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | ||
|  | 		    T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | ||
|  | 		    T9 = VADD(T7, T8); | ||
|  | 		    Tb = VSUB(T7, T8); | ||
|  | 		    Tv = VADD(T6, T9); | ||
|  | 		    Ta = VFNMS(LDK(KP500000000), T9, T6); | ||
|  | 		    Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta)); | ||
|  | 		    Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta)); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tx, Tz, TA, Tt, Tu; | ||
|  | 		    Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw))); | ||
|  | 		    Tz = VADD(Tv, Tw); | ||
|  | 		    TA = VFNMS(LDK(KP500000000), Tz, Ty); | ||
|  | 		    ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0])); | ||
|  | 		    ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0])); | ||
|  | 		    Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5)))); | ||
|  | 		    Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm)); | ||
|  | 		    ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)])); | ||
|  | 		    ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0])); | ||
|  | 		    { | ||
|  | 			 V Tl, Ts, Tq, Tr, Tk, Tp; | ||
|  | 			 Tk = VADD(Tc, Tj); | ||
|  | 			 Tl = VADD(T5, Tk); | ||
|  | 			 Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5)); | ||
|  | 			 Tp = VADD(Tn, To); | ||
|  | 			 Tq = VBYI(VADD(Tm, Tp)); | ||
|  | 			 Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj))))); | ||
|  | 			 ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0])); | ||
|  | 			 ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)])); | ||
|  | 			 ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)])); | ||
|  | 			 ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0])); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), { 30, 10, 16, 0 }, &GENUS, 0, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_n1bv_9) (planner *p) { X(kdft_register) (p, n1bv_9, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |