1088 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1088 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:11 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hc2cb2_20 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 276 FP additions, 198 FP multiplications, | ||
|  |  * (or, 136 additions, 58 multiplications, 140 fused multiply/add), | ||
|  |  * 129 stack variables, 4 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { | ||
|  | 	       E TD, TH, TE, T1L, T1N, T1X, TG, T29, TI, T2b, T1V, T1O, T24, T36, T5b; | ||
|  | 	       E T1S, T1Y, T3b, T3e, T2o, T2Y, T2U, T31, T2s, T4y, T4u, T2f, T2c, T2g, T5g; | ||
|  | 	       E T2k, T1s, T48, T4c, T5q, T5m, T4k, T4f; | ||
|  | 	       { | ||
|  | 		    E T1r, T1M, T2T, T1R, T2X, T23, T2r, T1W, T2n, T2a, TF, T4x; | ||
|  | 		    TD = W[0]; | ||
|  | 		    TH = W[3]; | ||
|  | 		    TE = W[2]; | ||
|  | 		    TF = TD * TE; | ||
|  | 		    T1r = TD * TH; | ||
|  | 		    T1L = W[6]; | ||
|  | 		    T1M = TD * T1L; | ||
|  | 		    T2T = TE * T1L; | ||
|  | 		    T1N = W[7]; | ||
|  | 		    T1R = TD * T1N; | ||
|  | 		    T2X = TE * T1N; | ||
|  | 		    T1X = W[5]; | ||
|  | 		    T23 = TE * T1X; | ||
|  | 		    T2r = TD * T1X; | ||
|  | 		    TG = W[1]; | ||
|  | 		    T29 = FNMS(TG, TH, TF); | ||
|  | 		    TI = FMA(TG, TH, TF); | ||
|  | 		    T2b = FMA(TG, TE, T1r); | ||
|  | 		    T1V = W[4]; | ||
|  | 		    T1W = TE * T1V; | ||
|  | 		    T2n = TD * T1V; | ||
|  | 		    T2a = T29 * T1V; | ||
|  | 		    T1O = FMA(TG, T1N, T1M); | ||
|  | 		    T24 = FNMS(TH, T1V, T23); | ||
|  | 		    T36 = FNMS(TG, T1V, T2r); | ||
|  | 		    T5b = FNMS(T2b, T1X, T2a); | ||
|  | 		    T1S = FNMS(TG, T1L, T1R); | ||
|  | 		    T1Y = FMA(TH, T1X, T1W); | ||
|  | 		    T3b = FNMS(TH, T1X, T1W); | ||
|  | 		    T3e = FMA(TH, T1V, T23); | ||
|  | 		    T2o = FNMS(TG, T1X, T2n); | ||
|  | 		    T2Y = FNMS(TH, T1L, T2X); | ||
|  | 		    T2U = FMA(TH, T1N, T2T); | ||
|  | 		    T31 = FMA(TG, T1X, T2n); | ||
|  | 		    T2s = FMA(TG, T1V, T2r); | ||
|  | 		    T4x = T29 * T1N; | ||
|  | 		    T4y = FNMS(T2b, T1L, T4x); | ||
|  | 		    { | ||
|  | 			 E T4t, T2e, T2d, T2j; | ||
|  | 			 T4t = T29 * T1L; | ||
|  | 			 T4u = FMA(T2b, T1N, T4t); | ||
|  | 			 T2e = T29 * T1X; | ||
|  | 			 T2f = FNMS(T2b, T1V, T2e); | ||
|  | 			 T2c = FMA(T2b, T1X, T2a); | ||
|  | 			 T2d = T2c * T1L; | ||
|  | 			 T2j = T2c * T1N; | ||
|  | 			 T2g = FMA(T2f, T1N, T2d); | ||
|  | 			 T5g = FMA(T2b, T1V, T2e); | ||
|  | 			 T2k = FNMS(T2f, T1L, T2j); | ||
|  | 			 { | ||
|  | 			      E T47, T5p, T4b, T5l; | ||
|  | 			      T47 = TI * T1V; | ||
|  | 			      T5p = TI * T1N; | ||
|  | 			      T4b = TI * T1X; | ||
|  | 			      T5l = TI * T1L; | ||
|  | 			      T1s = FNMS(TG, TE, T1r); | ||
|  | 			      T48 = FMA(T1s, T1X, T47); | ||
|  | 			      T4c = FNMS(T1s, T1V, T4b); | ||
|  | 			      T5q = FNMS(T1s, T1L, T5p); | ||
|  | 			      T5m = FMA(T1s, T1N, T5l); | ||
|  | 			      T4k = FMA(T1s, T1V, T4b); | ||
|  | 			      T4f = FNMS(T1s, T1X, T47); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7, T4B, T4V, TJ, T1z, T3j, T3V, T2H, T18, T42, T43, T1n, T2D, T53, T52; | ||
|  | 		    E T2A, T1H, T4R, T4O, T1G, T2O, T3I, T2P, T3P, T2I, T2J, T2K, T1A, T1B, T1C; | ||
|  | 		    E TC, T2w, T3Y, T40, T4I, T4K, TQ, TS, T3y, T3A, T4Y, T50; | ||
|  | 		    { | ||
|  | 			 E T3, T3h, T1v, T3T, T6, T3U, T1y, T3i; | ||
|  | 			 { | ||
|  | 			      E T1, T2, T1t, T1u; | ||
|  | 			      T1 = Rp[0]; | ||
|  | 			      T2 = Rm[WS(rs, 9)]; | ||
|  | 			      T3 = T1 + T2; | ||
|  | 			      T3h = T1 - T2; | ||
|  | 			      T1t = Ip[0]; | ||
|  | 			      T1u = Im[WS(rs, 9)]; | ||
|  | 			      T1v = T1t - T1u; | ||
|  | 			      T3T = T1t + T1u; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4, T5, T1w, T1x; | ||
|  | 			      T4 = Rp[WS(rs, 5)]; | ||
|  | 			      T5 = Rm[WS(rs, 4)]; | ||
|  | 			      T6 = T4 + T5; | ||
|  | 			      T3U = T4 - T5; | ||
|  | 			      T1w = Ip[WS(rs, 5)]; | ||
|  | 			      T1x = Im[WS(rs, 4)]; | ||
|  | 			      T1y = T1w - T1x; | ||
|  | 			      T3i = T1w + T1x; | ||
|  | 			 } | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 T4B = T3h - T3i; | ||
|  | 			 T4V = T3U + T3T; | ||
|  | 			 TJ = T3 - T6; | ||
|  | 			 T1z = T1v - T1y; | ||
|  | 			 T3j = T3h + T3i; | ||
|  | 			 T3V = T3T - T3U; | ||
|  | 			 T2H = T1v + T1y; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te, T4C, T4M, TK, T1f, T3m, T3L, T2y, TA, T4G, T4Q, TO, T17, T3w, T3H; | ||
|  | 			 E T2C, Tl, T4D, T4N, TL, T1m, T3p, T3O, T2z, Tt, T4F, T4P, TN, T10, T3t; | ||
|  | 			 E T3E, T2B; | ||
|  | 			 { | ||
|  | 			      E Ta, T3k, T1b, T3J, Td, T3K, T1e, T3l; | ||
|  | 			      { | ||
|  | 				   E T8, T9, T19, T1a; | ||
|  | 				   T8 = Rp[WS(rs, 4)]; | ||
|  | 				   T9 = Rm[WS(rs, 5)]; | ||
|  | 				   Ta = T8 + T9; | ||
|  | 				   T3k = T8 - T9; | ||
|  | 				   T19 = Ip[WS(rs, 4)]; | ||
|  | 				   T1a = Im[WS(rs, 5)]; | ||
|  | 				   T1b = T19 - T1a; | ||
|  | 				   T3J = T19 + T1a; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Tb, Tc, T1c, T1d; | ||
|  | 				   Tb = Rp[WS(rs, 9)]; | ||
|  | 				   Tc = Rm[0]; | ||
|  | 				   Td = Tb + Tc; | ||
|  | 				   T3K = Tb - Tc; | ||
|  | 				   T1c = Ip[WS(rs, 9)]; | ||
|  | 				   T1d = Im[0]; | ||
|  | 				   T1e = T1c - T1d; | ||
|  | 				   T3l = T1c + T1d; | ||
|  | 			      } | ||
|  | 			      Te = Ta + Td; | ||
|  | 			      T4C = T3k - T3l; | ||
|  | 			      T4M = T3K + T3J; | ||
|  | 			      TK = Ta - Td; | ||
|  | 			      T1f = T1b - T1e; | ||
|  | 			      T3m = T3k + T3l; | ||
|  | 			      T3L = T3J - T3K; | ||
|  | 			      T2y = T1b + T1e; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tw, T3u, T13, T3G, Tz, T3F, T16, T3v; | ||
|  | 			      { | ||
|  | 				   E Tu, Tv, T11, T12; | ||
|  | 				   Tu = Rm[WS(rs, 7)]; | ||
|  | 				   Tv = Rp[WS(rs, 2)]; | ||
|  | 				   Tw = Tu + Tv; | ||
|  | 				   T3u = Tu - Tv; | ||
|  | 				   T11 = Ip[WS(rs, 2)]; | ||
|  | 				   T12 = Im[WS(rs, 7)]; | ||
|  | 				   T13 = T11 - T12; | ||
|  | 				   T3G = T11 + T12; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Tx, Ty, T14, T15; | ||
|  | 				   Tx = Rm[WS(rs, 2)]; | ||
|  | 				   Ty = Rp[WS(rs, 7)]; | ||
|  | 				   Tz = Tx + Ty; | ||
|  | 				   T3F = Tx - Ty; | ||
|  | 				   T14 = Ip[WS(rs, 7)]; | ||
|  | 				   T15 = Im[WS(rs, 2)]; | ||
|  | 				   T16 = T14 - T15; | ||
|  | 				   T3v = T14 + T15; | ||
|  | 			      } | ||
|  | 			      TA = Tw + Tz; | ||
|  | 			      T4G = T3u + T3v; | ||
|  | 			      T4Q = T3F - T3G; | ||
|  | 			      TO = Tw - Tz; | ||
|  | 			      T17 = T13 - T16; | ||
|  | 			      T3w = T3u - T3v; | ||
|  | 			      T3H = T3F + T3G; | ||
|  | 			      T2C = T13 + T16; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Th, T3n, T1i, T3N, Tk, T3M, T1l, T3o; | ||
|  | 			      { | ||
|  | 				   E Tf, Tg, T1g, T1h; | ||
|  | 				   Tf = Rm[WS(rs, 3)]; | ||
|  | 				   Tg = Rp[WS(rs, 6)]; | ||
|  | 				   Th = Tf + Tg; | ||
|  | 				   T3n = Tf - Tg; | ||
|  | 				   T1g = Ip[WS(rs, 6)]; | ||
|  | 				   T1h = Im[WS(rs, 3)]; | ||
|  | 				   T1i = T1g - T1h; | ||
|  | 				   T3N = T1g + T1h; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Ti, Tj, T1j, T1k; | ||
|  | 				   Ti = Rp[WS(rs, 1)]; | ||
|  | 				   Tj = Rm[WS(rs, 8)]; | ||
|  | 				   Tk = Ti + Tj; | ||
|  | 				   T3M = Ti - Tj; | ||
|  | 				   T1j = Ip[WS(rs, 1)]; | ||
|  | 				   T1k = Im[WS(rs, 8)]; | ||
|  | 				   T1l = T1j - T1k; | ||
|  | 				   T3o = T1j + T1k; | ||
|  | 			      } | ||
|  | 			      Tl = Th + Tk; | ||
|  | 			      T4D = T3n - T3o; | ||
|  | 			      T4N = T3M - T3N; | ||
|  | 			      TL = Th - Tk; | ||
|  | 			      T1m = T1i - T1l; | ||
|  | 			      T3p = T3n + T3o; | ||
|  | 			      T3O = T3M + T3N; | ||
|  | 			      T2z = T1i + T1l; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tp, T3r, TW, T3C, Ts, T3D, TZ, T3s; | ||
|  | 			      { | ||
|  | 				   E Tn, To, TU, TV; | ||
|  | 				   Tn = Rp[WS(rs, 8)]; | ||
|  | 				   To = Rm[WS(rs, 1)]; | ||
|  | 				   Tp = Tn + To; | ||
|  | 				   T3r = Tn - To; | ||
|  | 				   TU = Ip[WS(rs, 8)]; | ||
|  | 				   TV = Im[WS(rs, 1)]; | ||
|  | 				   TW = TU - TV; | ||
|  | 				   T3C = TU + TV; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Tq, Tr, TX, TY; | ||
|  | 				   Tq = Rm[WS(rs, 6)]; | ||
|  | 				   Tr = Rp[WS(rs, 3)]; | ||
|  | 				   Ts = Tq + Tr; | ||
|  | 				   T3D = Tq - Tr; | ||
|  | 				   TX = Ip[WS(rs, 3)]; | ||
|  | 				   TY = Im[WS(rs, 6)]; | ||
|  | 				   TZ = TX - TY; | ||
|  | 				   T3s = TX + TY; | ||
|  | 			      } | ||
|  | 			      Tt = Tp + Ts; | ||
|  | 			      T4F = T3r + T3s; | ||
|  | 			      T4P = T3D + T3C; | ||
|  | 			      TN = Tp - Ts; | ||
|  | 			      T10 = TW - TZ; | ||
|  | 			      T3t = T3r - T3s; | ||
|  | 			      T3E = T3C - T3D; | ||
|  | 			      T2B = TW + TZ; | ||
|  | 			 } | ||
|  | 			 T18 = T10 - T17; | ||
|  | 			 T42 = T3t - T3w; | ||
|  | 			 T43 = T3m - T3p; | ||
|  | 			 T1n = T1f - T1m; | ||
|  | 			 T2D = T2B - T2C; | ||
|  | 			 T53 = T4F - T4G; | ||
|  | 			 T52 = T4C - T4D; | ||
|  | 			 T2A = T2y - T2z; | ||
|  | 			 T1H = TK - TL; | ||
|  | 			 T4R = T4P - T4Q; | ||
|  | 			 T4O = T4M - T4N; | ||
|  | 			 T1G = TN - TO; | ||
|  | 			 T2O = Te - Tl; | ||
|  | 			 T3I = T3E + T3H; | ||
|  | 			 T2P = Tt - TA; | ||
|  | 			 T3P = T3L + T3O; | ||
|  | 			 T2I = T2y + T2z; | ||
|  | 			 T2J = T2B + T2C; | ||
|  | 			 T2K = T2I + T2J; | ||
|  | 			 T1A = T1f + T1m; | ||
|  | 			 T1B = T10 + T17; | ||
|  | 			 T1C = T1A + T1B; | ||
|  | 			 { | ||
|  | 			      E Tm, TB, TM, TP; | ||
|  | 			      Tm = Te + Tl; | ||
|  | 			      TB = Tt + TA; | ||
|  | 			      TC = Tm + TB; | ||
|  | 			      T2w = Tm - TB; | ||
|  | 			      { | ||
|  | 				   E T3W, T3X, T4E, T4H; | ||
|  | 				   T3W = T3L - T3O; | ||
|  | 				   T3X = T3E - T3H; | ||
|  | 				   T3Y = T3W + T3X; | ||
|  | 				   T40 = T3W - T3X; | ||
|  | 				   T4E = T4C + T4D; | ||
|  | 				   T4H = T4F + T4G; | ||
|  | 				   T4I = T4E + T4H; | ||
|  | 				   T4K = T4E - T4H; | ||
|  | 			      } | ||
|  | 			      TM = TK + TL; | ||
|  | 			      TP = TN + TO; | ||
|  | 			      TQ = TM + TP; | ||
|  | 			      TS = TM - TP; | ||
|  | 			      { | ||
|  | 				   E T3q, T3x, T4W, T4X; | ||
|  | 				   T3q = T3m + T3p; | ||
|  | 				   T3x = T3t + T3w; | ||
|  | 				   T3y = T3q + T3x; | ||
|  | 				   T3A = T3q - T3x; | ||
|  | 				   T4W = T4M + T4N; | ||
|  | 				   T4X = T4P + T4Q; | ||
|  | 				   T4Y = T4W + T4X; | ||
|  | 				   T50 = T4W - T4X; | ||
|  | 			      } | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    Rp[0] = T7 + TC; | ||
|  | 		    Rm[0] = T2H + T2K; | ||
|  | 		    { | ||
|  | 			 E T2t, T2q, T2u, T2p; | ||
|  | 			 T2t = T1z + T1C; | ||
|  | 			 T2p = TJ + TQ; | ||
|  | 			 T2q = T2o * T2p; | ||
|  | 			 T2u = T2s * T2p; | ||
|  | 			 Rp[WS(rs, 5)] = FNMS(T2s, T2t, T2q); | ||
|  | 			 Rm[WS(rs, 5)] = FMA(T2o, T2t, T2u); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T5t, T5u, T5v, T5w; | ||
|  | 			 T5t = T4B + T4I; | ||
|  | 			 T5u = T2c * T5t; | ||
|  | 			 T5v = T4V + T4Y; | ||
|  | 			 T5w = T2c * T5v; | ||
|  | 			 Ip[WS(rs, 2)] = FNMS(T2f, T5v, T5u); | ||
|  | 			 Im[WS(rs, 2)] = FMA(T2f, T5t, T5w); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4v, T4w, T4z, T4A; | ||
|  | 			 T4v = T3j + T3y; | ||
|  | 			 T4w = T4u * T4v; | ||
|  | 			 T4z = T3V + T3Y; | ||
|  | 			 T4A = T4u * T4z; | ||
|  | 			 Ip[WS(rs, 7)] = FNMS(T4y, T4z, T4w); | ||
|  | 			 Im[WS(rs, 7)] = FMA(T4y, T4v, T4A); | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3R, T4p, T49, T4i, T45, T4r, T4d, T4n; | ||
|  | 			 { | ||
|  | 			      E T3Q, T4h, T3B, T4g, T3z; | ||
|  | 			      T3Q = FNMS(KP618033988, T3P, T3I); | ||
|  | 			      T4h = FMA(KP618033988, T3I, T3P); | ||
|  | 			      T3z = FNMS(KP250000000, T3y, T3j); | ||
|  | 			      T3B = FNMS(KP559016994, T3A, T3z); | ||
|  | 			      T4g = FMA(KP559016994, T3A, T3z); | ||
|  | 			      T3R = FNMS(KP951056516, T3Q, T3B); | ||
|  | 			      T4p = FMA(KP951056516, T4h, T4g); | ||
|  | 			      T49 = FMA(KP951056516, T3Q, T3B); | ||
|  | 			      T4i = FNMS(KP951056516, T4h, T4g); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T44, T4m, T41, T4l, T3Z; | ||
|  | 			      T44 = FNMS(KP618033988, T43, T42); | ||
|  | 			      T4m = FMA(KP618033988, T42, T43); | ||
|  | 			      T3Z = FNMS(KP250000000, T3Y, T3V); | ||
|  | 			      T41 = FNMS(KP559016994, T40, T3Z); | ||
|  | 			      T4l = FMA(KP559016994, T40, T3Z); | ||
|  | 			      T45 = FMA(KP951056516, T44, T41); | ||
|  | 			      T4r = FNMS(KP951056516, T4m, T4l); | ||
|  | 			      T4d = FNMS(KP951056516, T44, T41); | ||
|  | 			      T4n = FMA(KP951056516, T4m, T4l); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3S, T46, T4a, T4e; | ||
|  | 			      T3S = TE * T3R; | ||
|  | 			      Ip[WS(rs, 1)] = FNMS(TH, T45, T3S); | ||
|  | 			      T46 = TE * T45; | ||
|  | 			      Im[WS(rs, 1)] = FMA(TH, T3R, T46); | ||
|  | 			      T4a = T48 * T49; | ||
|  | 			      Ip[WS(rs, 3)] = FNMS(T4c, T4d, T4a); | ||
|  | 			      T4e = T48 * T4d; | ||
|  | 			      Im[WS(rs, 3)] = FMA(T4c, T49, T4e); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4j, T4o, T4q, T4s; | ||
|  | 			      T4j = T4f * T4i; | ||
|  | 			      Ip[WS(rs, 5)] = FNMS(T4k, T4n, T4j); | ||
|  | 			      T4o = T4f * T4n; | ||
|  | 			      Im[WS(rs, 5)] = FMA(T4k, T4i, T4o); | ||
|  | 			      T4q = T1L * T4p; | ||
|  | 			      Ip[WS(rs, 9)] = FNMS(T1N, T4r, T4q); | ||
|  | 			      T4s = T1L * T4r; | ||
|  | 			      Im[WS(rs, 9)] = FMA(T1N, T4p, T4s); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4T, T5n, T57, T5e, T55, T5r, T59, T5j; | ||
|  | 			 { | ||
|  | 			      E T4S, T5d, T4L, T5c, T4J; | ||
|  | 			      T4S = FMA(KP618033988, T4R, T4O); | ||
|  | 			      T5d = FNMS(KP618033988, T4O, T4R); | ||
|  | 			      T4J = FNMS(KP250000000, T4I, T4B); | ||
|  | 			      T4L = FMA(KP559016994, T4K, T4J); | ||
|  | 			      T5c = FNMS(KP559016994, T4K, T4J); | ||
|  | 			      T4T = FNMS(KP951056516, T4S, T4L); | ||
|  | 			      T5n = FMA(KP951056516, T5d, T5c); | ||
|  | 			      T57 = FMA(KP951056516, T4S, T4L); | ||
|  | 			      T5e = FNMS(KP951056516, T5d, T5c); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T54, T5i, T51, T5h, T4Z; | ||
|  | 			      T54 = FMA(KP618033988, T53, T52); | ||
|  | 			      T5i = FNMS(KP618033988, T52, T53); | ||
|  | 			      T4Z = FNMS(KP250000000, T4Y, T4V); | ||
|  | 			      T51 = FMA(KP559016994, T50, T4Z); | ||
|  | 			      T5h = FNMS(KP559016994, T50, T4Z); | ||
|  | 			      T55 = FMA(KP951056516, T54, T51); | ||
|  | 			      T5r = FNMS(KP951056516, T5i, T5h); | ||
|  | 			      T59 = FNMS(KP951056516, T54, T51); | ||
|  | 			      T5j = FMA(KP951056516, T5i, T5h); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4U, T56, T58, T5a; | ||
|  | 			      T4U = TD * T4T; | ||
|  | 			      Ip[0] = FNMS(TG, T55, T4U); | ||
|  | 			      T56 = TD * T55; | ||
|  | 			      Im[0] = FMA(TG, T4T, T56); | ||
|  | 			      T58 = T1V * T57; | ||
|  | 			      Ip[WS(rs, 4)] = FNMS(T1X, T59, T58); | ||
|  | 			      T5a = T1V * T59; | ||
|  | 			      Im[WS(rs, 4)] = FMA(T1X, T57, T5a); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T5f, T5k, T5o, T5s; | ||
|  | 			      T5f = T5b * T5e; | ||
|  | 			      Ip[WS(rs, 6)] = FNMS(T5g, T5j, T5f); | ||
|  | 			      T5k = T5b * T5j; | ||
|  | 			      Im[WS(rs, 6)] = FMA(T5g, T5e, T5k); | ||
|  | 			      T5o = T5m * T5n; | ||
|  | 			      Ip[WS(rs, 8)] = FNMS(T5q, T5r, T5o); | ||
|  | 			      T5s = T5m * T5r; | ||
|  | 			      Im[WS(rs, 8)] = FMA(T5q, T5n, T5s); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T2Q, T38, T2N, T37, T2F, T3c, T2V, T34, T2L, T2M; | ||
|  | 			 T2Q = FMA(KP618033988, T2P, T2O); | ||
|  | 			 T38 = FNMS(KP618033988, T2O, T2P); | ||
|  | 			 T2L = FNMS(KP250000000, T2K, T2H); | ||
|  | 			 T2M = T2I - T2J; | ||
|  | 			 T2N = FMA(KP559016994, T2M, T2L); | ||
|  | 			 T37 = FNMS(KP559016994, T2M, T2L); | ||
|  | 			 { | ||
|  | 			      E T2E, T33, T2x, T32, T2v; | ||
|  | 			      T2E = FMA(KP618033988, T2D, T2A); | ||
|  | 			      T33 = FNMS(KP618033988, T2A, T2D); | ||
|  | 			      T2v = FNMS(KP250000000, TC, T7); | ||
|  | 			      T2x = FMA(KP559016994, T2w, T2v); | ||
|  | 			      T32 = FNMS(KP559016994, T2w, T2v); | ||
|  | 			      T2F = FMA(KP951056516, T2E, T2x); | ||
|  | 			      T3c = FMA(KP951056516, T33, T32); | ||
|  | 			      T2V = FNMS(KP951056516, T2E, T2x); | ||
|  | 			      T34 = FNMS(KP951056516, T33, T32); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2G, T2S, T2R, T3d, T3g, T3f; | ||
|  | 			      T2G = T29 * T2F; | ||
|  | 			      T2S = T2b * T2F; | ||
|  | 			      T2R = FNMS(KP951056516, T2Q, T2N); | ||
|  | 			      Rp[WS(rs, 2)] = FNMS(T2b, T2R, T2G); | ||
|  | 			      Rm[WS(rs, 2)] = FMA(T29, T2R, T2S); | ||
|  | 			      T3d = T3b * T3c; | ||
|  | 			      T3g = T3e * T3c; | ||
|  | 			      T3f = FNMS(KP951056516, T38, T37); | ||
|  | 			      Rp[WS(rs, 6)] = FNMS(T3e, T3f, T3d); | ||
|  | 			      Rm[WS(rs, 6)] = FMA(T3b, T3f, T3g); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2W, T30, T2Z, T35, T3a, T39; | ||
|  | 			      T2W = T2U * T2V; | ||
|  | 			      T30 = T2Y * T2V; | ||
|  | 			      T2Z = FMA(KP951056516, T2Q, T2N); | ||
|  | 			      Rp[WS(rs, 8)] = FNMS(T2Y, T2Z, T2W); | ||
|  | 			      Rm[WS(rs, 8)] = FMA(T2U, T2Z, T30); | ||
|  | 			      T35 = T31 * T34; | ||
|  | 			      T3a = T36 * T34; | ||
|  | 			      T39 = FMA(KP951056516, T38, T37); | ||
|  | 			      Rp[WS(rs, 4)] = FNMS(T36, T39, T35); | ||
|  | 			      Rm[WS(rs, 4)] = FMA(T31, T39, T3a); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1I, T26, T1F, T25, T1p, T2h, T1P, T21, T1D, T1E; | ||
|  | 			 T1I = FNMS(KP618033988, T1H, T1G); | ||
|  | 			 T26 = FMA(KP618033988, T1G, T1H); | ||
|  | 			 T1D = FNMS(KP250000000, T1C, T1z); | ||
|  | 			 T1E = T1A - T1B; | ||
|  | 			 T1F = FNMS(KP559016994, T1E, T1D); | ||
|  | 			 T25 = FMA(KP559016994, T1E, T1D); | ||
|  | 			 { | ||
|  | 			      E T1o, T20, TT, T1Z, TR; | ||
|  | 			      T1o = FNMS(KP618033988, T1n, T18); | ||
|  | 			      T20 = FMA(KP618033988, T18, T1n); | ||
|  | 			      TR = FNMS(KP250000000, TQ, TJ); | ||
|  | 			      TT = FNMS(KP559016994, TS, TR); | ||
|  | 			      T1Z = FMA(KP559016994, TS, TR); | ||
|  | 			      T1p = FMA(KP951056516, T1o, TT); | ||
|  | 			      T2h = FMA(KP951056516, T20, T1Z); | ||
|  | 			      T1P = FNMS(KP951056516, T1o, TT); | ||
|  | 			      T21 = FNMS(KP951056516, T20, T1Z); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1q, T1K, T1J, T2i, T2m, T2l; | ||
|  | 			      T1q = TI * T1p; | ||
|  | 			      T1K = T1s * T1p; | ||
|  | 			      T1J = FNMS(KP951056516, T1I, T1F); | ||
|  | 			      Rp[WS(rs, 1)] = FNMS(T1s, T1J, T1q); | ||
|  | 			      Rm[WS(rs, 1)] = FMA(TI, T1J, T1K); | ||
|  | 			      T2i = T2g * T2h; | ||
|  | 			      T2m = T2k * T2h; | ||
|  | 			      T2l = FNMS(KP951056516, T26, T25); | ||
|  | 			      Rp[WS(rs, 7)] = FNMS(T2k, T2l, T2i); | ||
|  | 			      Rm[WS(rs, 7)] = FMA(T2g, T2l, T2m); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1Q, T1U, T1T, T22, T28, T27; | ||
|  | 			      T1Q = T1O * T1P; | ||
|  | 			      T1U = T1S * T1P; | ||
|  | 			      T1T = FMA(KP951056516, T1I, T1F); | ||
|  | 			      Rp[WS(rs, 9)] = FNMS(T1S, T1T, T1Q); | ||
|  | 			      Rm[WS(rs, 9)] = FMA(T1O, T1T, T1U); | ||
|  | 			      T22 = T1Y * T21; | ||
|  | 			      T28 = T24 * T21; | ||
|  | 			      T27 = FMA(KP951056516, T26, T25); | ||
|  | 			      Rp[WS(rs, 3)] = FNMS(T24, T27, T22); | ||
|  | 			      Rm[WS(rs, 3)] = FMA(T1Y, T27, T28); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_CEXP, 1, 1 }, | ||
|  |      { TW_CEXP, 1, 3 }, | ||
|  |      { TW_CEXP, 1, 9 }, | ||
|  |      { TW_CEXP, 1, 19 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 20, "hc2cb2_20", twinstr, &GENUS, { 136, 58, 140, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb2_20) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb2_20, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hc2cb2_20 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 276 FP additions, 164 FP multiplications, | ||
|  |  * (or, 204 additions, 92 multiplications, 72 fused multiply/add), | ||
|  |  * 137 stack variables, 4 constants, and 80 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(80, rs)) { | ||
|  | 	       E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X; | ||
|  | 	       E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d; | ||
|  | 	       E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L; | ||
|  | 	       { | ||
|  | 		    E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h; | ||
|  | 		    { | ||
|  | 			 E TF, T1s, TI, T1r; | ||
|  | 			 TD = W[0]; | ||
|  | 			 TG = W[1]; | ||
|  | 			 TE = W[2]; | ||
|  | 			 TH = W[3]; | ||
|  | 			 TF = TD * TE; | ||
|  | 			 T1s = TG * TE; | ||
|  | 			 TI = TG * TH; | ||
|  | 			 T1r = TD * TH; | ||
|  | 			 TJ = TF + TI; | ||
|  | 			 T1t = T1r - T1s; | ||
|  | 			 T27 = T1r + T1s; | ||
|  | 			 T25 = TF - TI; | ||
|  | 			 T1T = W[5]; | ||
|  | 			 T1U = TH * T1T; | ||
|  | 			 T2l = TD * T1T; | ||
|  | 			 T1Z = TE * T1T; | ||
|  | 			 T2i = TG * T1T; | ||
|  | 			 T1R = W[4]; | ||
|  | 			 T1S = TE * T1R; | ||
|  | 			 T2m = TG * T1R; | ||
|  | 			 T20 = TH * T1R; | ||
|  | 			 T2h = TD * T1R; | ||
|  | 		    } | ||
|  | 		    T1V = T1S + T1U; | ||
|  | 		    T2j = T2h - T2i; | ||
|  | 		    T2Z = T1Z + T20; | ||
|  | 		    T21 = T1Z - T20; | ||
|  | 		    T2X = T1S - T1U; | ||
|  | 		    T2T = T2l - T2m; | ||
|  | 		    T2n = T2l + T2m; | ||
|  | 		    T2P = T2h + T2i; | ||
|  | 		    { | ||
|  | 			 E T3T, T3U, T3P, T3Q; | ||
|  | 			 T3T = TJ * T1T; | ||
|  | 			 T3U = T1t * T1R; | ||
|  | 			 T3V = T3T - T3U; | ||
|  | 			 T41 = T3T + T3U; | ||
|  | 			 T3P = TJ * T1R; | ||
|  | 			 T3Q = T1t * T1T; | ||
|  | 			 T3R = T3P + T3Q; | ||
|  | 			 T3X = T3P - T3Q; | ||
|  | 			 { | ||
|  | 			      E T26, T28, T2a, T2b; | ||
|  | 			      T26 = T25 * T1R; | ||
|  | 			      T28 = T27 * T1T; | ||
|  | 			      T29 = T26 + T28; | ||
|  | 			      T2a = T25 * T1T; | ||
|  | 			      T2b = T27 * T1R; | ||
|  | 			      T2c = T2a - T2b; | ||
|  | 			      T4H = T26 - T28; | ||
|  | 			      T4L = T2a + T2b; | ||
|  | 			      T1L = W[6]; | ||
|  | 			      T1M = W[7]; | ||
|  | 			      T1N = FMA(TD, T1L, TG * T1M); | ||
|  | 			      T2d = FMA(T29, T1L, T2c * T1M); | ||
|  | 			      T4R = FNMS(T1t, T1L, TJ * T1M); | ||
|  | 			      T1P = FNMS(TG, T1L, TD * T1M); | ||
|  | 			      T4P = FMA(TJ, T1L, T1t * T1M); | ||
|  | 			      T49 = FNMS(T27, T1L, T25 * T1M); | ||
|  | 			      T2N = FNMS(TH, T1L, TE * T1M); | ||
|  | 			      T2f = FNMS(T2c, T1L, T29 * T1M); | ||
|  | 			      T47 = FMA(T25, T1L, T27 * T1M); | ||
|  | 			      T2L = FMA(TE, T1L, TH * T1M); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B; | ||
|  | 		    E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC; | ||
|  | 		    E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H; | ||
|  | 		    E TN, TQ, TR, T48, T4a; | ||
|  | 		    { | ||
|  | 			 E T3, T3g, T1z, T3C, T6, T3D, T1C, T3h; | ||
|  | 			 { | ||
|  | 			      E T1, T2, T1x, T1y; | ||
|  | 			      T1 = Rp[0]; | ||
|  | 			      T2 = Rm[WS(rs, 9)]; | ||
|  | 			      T3 = T1 + T2; | ||
|  | 			      T3g = T1 - T2; | ||
|  | 			      T1x = Ip[0]; | ||
|  | 			      T1y = Im[WS(rs, 9)]; | ||
|  | 			      T1z = T1x - T1y; | ||
|  | 			      T3C = T1x + T1y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4, T5, T1A, T1B; | ||
|  | 			      T4 = Rp[WS(rs, 5)]; | ||
|  | 			      T5 = Rm[WS(rs, 4)]; | ||
|  | 			      T6 = T4 + T5; | ||
|  | 			      T3D = T4 - T5; | ||
|  | 			      T1A = Ip[WS(rs, 5)]; | ||
|  | 			      T1B = Im[WS(rs, 4)]; | ||
|  | 			      T1C = T1A - T1B; | ||
|  | 			      T3h = T1A + T1B; | ||
|  | 			 } | ||
|  | 			 T7 = T3 + T6; | ||
|  | 			 T4i = T3g - T3h; | ||
|  | 			 T4x = T3D + T3C; | ||
|  | 			 TK = T3 - T6; | ||
|  | 			 T1D = T1z - T1C; | ||
|  | 			 T3i = T3g + T3h; | ||
|  | 			 T3E = T3C - T3D; | ||
|  | 			 T2D = T1z + T1C; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v; | ||
|  | 			 E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a; | ||
|  | 			 E T3s, T2v; | ||
|  | 			 { | ||
|  | 			      E Ta, T3j, TX, T31, Td, T32, T10, T3k; | ||
|  | 			      { | ||
|  | 				   E T8, T9, TV, TW; | ||
|  | 				   T8 = Rp[WS(rs, 4)]; | ||
|  | 				   T9 = Rm[WS(rs, 5)]; | ||
|  | 				   Ta = T8 + T9; | ||
|  | 				   T3j = T8 - T9; | ||
|  | 				   TV = Ip[WS(rs, 4)]; | ||
|  | 				   TW = Im[WS(rs, 5)]; | ||
|  | 				   TX = TV - TW; | ||
|  | 				   T31 = TV + TW; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Tb, Tc, TY, TZ; | ||
|  | 				   Tb = Rp[WS(rs, 9)]; | ||
|  | 				   Tc = Rm[0]; | ||
|  | 				   Td = Tb + Tc; | ||
|  | 				   T32 = Tb - Tc; | ||
|  | 				   TY = Ip[WS(rs, 9)]; | ||
|  | 				   TZ = Im[0]; | ||
|  | 				   T10 = TY - TZ; | ||
|  | 				   T3k = TY + TZ; | ||
|  | 			      } | ||
|  | 			      Te = Ta + Td; | ||
|  | 			      T4b = T3j - T3k; | ||
|  | 			      T4m = T32 + T31; | ||
|  | 			      TL = Ta - Td; | ||
|  | 			      T11 = TX - T10; | ||
|  | 			      T33 = T31 - T32; | ||
|  | 			      T3l = T3j + T3k; | ||
|  | 			      T2s = TX + T10; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tw, T3t, T1j, T3c, Tz, T3b, T1m, T3u; | ||
|  | 			      { | ||
|  | 				   E Tu, Tv, T1h, T1i; | ||
|  | 				   Tu = Rm[WS(rs, 7)]; | ||
|  | 				   Tv = Rp[WS(rs, 2)]; | ||
|  | 				   Tw = Tu + Tv; | ||
|  | 				   T3t = Tu - Tv; | ||
|  | 				   T1h = Ip[WS(rs, 2)]; | ||
|  | 				   T1i = Im[WS(rs, 7)]; | ||
|  | 				   T1j = T1h - T1i; | ||
|  | 				   T3c = T1h + T1i; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Tx, Ty, T1k, T1l; | ||
|  | 				   Tx = Rm[WS(rs, 2)]; | ||
|  | 				   Ty = Rp[WS(rs, 7)]; | ||
|  | 				   Tz = Tx + Ty; | ||
|  | 				   T3b = Tx - Ty; | ||
|  | 				   T1k = Ip[WS(rs, 7)]; | ||
|  | 				   T1l = Im[WS(rs, 2)]; | ||
|  | 				   T1m = T1k - T1l; | ||
|  | 				   T3u = T1k + T1l; | ||
|  | 			      } | ||
|  | 			      TA = Tw + Tz; | ||
|  | 			      T4f = T3t + T3u; | ||
|  | 			      T4q = T3b - T3c; | ||
|  | 			      TP = Tw - Tz; | ||
|  | 			      T1n = T1j - T1m; | ||
|  | 			      T3d = T3b + T3c; | ||
|  | 			      T3v = T3t - T3u; | ||
|  | 			      T2w = T1j + T1m; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Th, T3m, T14, T35, Tk, T34, T17, T3n; | ||
|  | 			      { | ||
|  | 				   E Tf, Tg, T12, T13; | ||
|  | 				   Tf = Rm[WS(rs, 3)]; | ||
|  | 				   Tg = Rp[WS(rs, 6)]; | ||
|  | 				   Th = Tf + Tg; | ||
|  | 				   T3m = Tf - Tg; | ||
|  | 				   T12 = Ip[WS(rs, 6)]; | ||
|  | 				   T13 = Im[WS(rs, 3)]; | ||
|  | 				   T14 = T12 - T13; | ||
|  | 				   T35 = T12 + T13; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Ti, Tj, T15, T16; | ||
|  | 				   Ti = Rp[WS(rs, 1)]; | ||
|  | 				   Tj = Rm[WS(rs, 8)]; | ||
|  | 				   Tk = Ti + Tj; | ||
|  | 				   T34 = Ti - Tj; | ||
|  | 				   T15 = Ip[WS(rs, 1)]; | ||
|  | 				   T16 = Im[WS(rs, 8)]; | ||
|  | 				   T17 = T15 - T16; | ||
|  | 				   T3n = T15 + T16; | ||
|  | 			      } | ||
|  | 			      Tl = Th + Tk; | ||
|  | 			      T4c = T3m - T3n; | ||
|  | 			      T4n = T34 - T35; | ||
|  | 			      TM = Th - Tk; | ||
|  | 			      T18 = T14 - T17; | ||
|  | 			      T36 = T34 + T35; | ||
|  | 			      T3o = T3m + T3n; | ||
|  | 			      T2t = T14 + T17; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E Tp, T3q, T1c, T38, Ts, T39, T1f, T3r; | ||
|  | 			      { | ||
|  | 				   E Tn, To, T1a, T1b; | ||
|  | 				   Tn = Rp[WS(rs, 8)]; | ||
|  | 				   To = Rm[WS(rs, 1)]; | ||
|  | 				   Tp = Tn + To; | ||
|  | 				   T3q = Tn - To; | ||
|  | 				   T1a = Ip[WS(rs, 8)]; | ||
|  | 				   T1b = Im[WS(rs, 1)]; | ||
|  | 				   T1c = T1a - T1b; | ||
|  | 				   T38 = T1a + T1b; | ||
|  | 			      } | ||
|  | 			      { | ||
|  | 				   E Tq, Tr, T1d, T1e; | ||
|  | 				   Tq = Rm[WS(rs, 6)]; | ||
|  | 				   Tr = Rp[WS(rs, 3)]; | ||
|  | 				   Ts = Tq + Tr; | ||
|  | 				   T39 = Tq - Tr; | ||
|  | 				   T1d = Ip[WS(rs, 3)]; | ||
|  | 				   T1e = Im[WS(rs, 6)]; | ||
|  | 				   T1f = T1d - T1e; | ||
|  | 				   T3r = T1d + T1e; | ||
|  | 			      } | ||
|  | 			      Tt = Tp + Ts; | ||
|  | 			      T4e = T3q + T3r; | ||
|  | 			      T4p = T39 + T38; | ||
|  | 			      TO = Tp - Ts; | ||
|  | 			      T1g = T1c - T1f; | ||
|  | 			      T3a = T38 - T39; | ||
|  | 			      T3s = T3q - T3r; | ||
|  | 			      T2v = T1c + T1f; | ||
|  | 			 } | ||
|  | 			 T19 = T11 - T18; | ||
|  | 			 T3L = T3l - T3o; | ||
|  | 			 T3M = T3s - T3v; | ||
|  | 			 T1o = T1g - T1n; | ||
|  | 			 T2x = T2v - T2w; | ||
|  | 			 T4C = T4e - T4f; | ||
|  | 			 T4B = T4b - T4c; | ||
|  | 			 T2u = T2s - T2t; | ||
|  | 			 T1v = TO - TP; | ||
|  | 			 T4r = T4p - T4q; | ||
|  | 			 T4o = T4m - T4n; | ||
|  | 			 T1u = TL - TM; | ||
|  | 			 T2H = Te - Tl; | ||
|  | 			 T37 = T33 + T36; | ||
|  | 			 T2I = Tt - TA; | ||
|  | 			 T3e = T3a + T3d; | ||
|  | 			 T3p = T3l + T3o; | ||
|  | 			 T3w = T3s + T3v; | ||
|  | 			 T3x = T3p + T3w; | ||
|  | 			 Tm = Te + Tl; | ||
|  | 			 TB = Tt + TA; | ||
|  | 			 TC = Tm + TB; | ||
|  | 			 T4u = T4m + T4n; | ||
|  | 			 T4v = T4p + T4q; | ||
|  | 			 T4y = T4u + T4v; | ||
|  | 			 T2A = T2s + T2t; | ||
|  | 			 T2B = T2v + T2w; | ||
|  | 			 T2E = T2A + T2B; | ||
|  | 			 T1E = T11 + T18; | ||
|  | 			 T1F = T1g + T1n; | ||
|  | 			 T1G = T1E + T1F; | ||
|  | 			 T4d = T4b + T4c; | ||
|  | 			 T4g = T4e + T4f; | ||
|  | 			 T4j = T4d + T4g; | ||
|  | 			 T3F = T33 - T36; | ||
|  | 			 T3G = T3a - T3d; | ||
|  | 			 T3H = T3F + T3G; | ||
|  | 			 TN = TL + TM; | ||
|  | 			 TQ = TO + TP; | ||
|  | 			 TR = TN + TQ; | ||
|  | 		    } | ||
|  | 		    Rp[0] = T7 + TC; | ||
|  | 		    Rm[0] = T2D + T2E; | ||
|  | 		    { | ||
|  | 			 E T2k, T2o, T4T, T4U; | ||
|  | 			 T2k = TK + TR; | ||
|  | 			 T2o = T1D + T1G; | ||
|  | 			 Rp[WS(rs, 5)] = FNMS(T2n, T2o, T2j * T2k); | ||
|  | 			 Rm[WS(rs, 5)] = FMA(T2n, T2k, T2j * T2o); | ||
|  | 			 T4T = T4i + T4j; | ||
|  | 			 T4U = T4x + T4y; | ||
|  | 			 Ip[WS(rs, 2)] = FNMS(T2c, T4U, T29 * T4T); | ||
|  | 			 Im[WS(rs, 2)] = FMA(T29, T4U, T2c * T4T); | ||
|  | 		    } | ||
|  | 		    T48 = T3i + T3x; | ||
|  | 		    T4a = T3E + T3H; | ||
|  | 		    Ip[WS(rs, 7)] = FNMS(T49, T4a, T47 * T48); | ||
|  | 		    Im[WS(rs, 7)] = FMA(T47, T4a, T49 * T48); | ||
|  | 		    { | ||
|  | 			 E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q; | ||
|  | 			 T2y = FMA(KP951056516, T2u, KP587785252 * T2x); | ||
|  | 			 T2J = FMA(KP951056516, T2H, KP587785252 * T2I); | ||
|  | 			 T2V = FNMS(KP951056516, T2I, KP587785252 * T2H); | ||
|  | 			 T2R = FNMS(KP951056516, T2x, KP587785252 * T2u); | ||
|  | 			 { | ||
|  | 			      E T2C, T2F, T2p, T2q; | ||
|  | 			      T2C = KP559016994 * (T2A - T2B); | ||
|  | 			      T2F = FNMS(KP250000000, T2E, T2D); | ||
|  | 			      T2G = T2C + T2F; | ||
|  | 			      T2U = T2F - T2C; | ||
|  | 			      T2p = KP559016994 * (Tm - TB); | ||
|  | 			      T2q = FNMS(KP250000000, TC, T7); | ||
|  | 			      T2r = T2p + T2q; | ||
|  | 			      T2Q = T2q - T2p; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2z, T2K, T2Y, T30; | ||
|  | 			      T2z = T2r + T2y; | ||
|  | 			      T2K = T2G - T2J; | ||
|  | 			      Rp[WS(rs, 2)] = FNMS(T27, T2K, T25 * T2z); | ||
|  | 			      Rm[WS(rs, 2)] = FMA(T27, T2z, T25 * T2K); | ||
|  | 			      T2Y = T2Q - T2R; | ||
|  | 			      T30 = T2V + T2U; | ||
|  | 			      Rp[WS(rs, 6)] = FNMS(T2Z, T30, T2X * T2Y); | ||
|  | 			      Rm[WS(rs, 6)] = FMA(T2Z, T2Y, T2X * T30); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T2M, T2O, T2S, T2W; | ||
|  | 			      T2M = T2r - T2y; | ||
|  | 			      T2O = T2J + T2G; | ||
|  | 			      Rp[WS(rs, 8)] = FNMS(T2N, T2O, T2L * T2M); | ||
|  | 			      Rm[WS(rs, 8)] = FMA(T2N, T2M, T2L * T2O); | ||
|  | 			      T2S = T2Q + T2R; | ||
|  | 			      T2W = T2U - T2V; | ||
|  | 			      Rp[WS(rs, 4)] = FNMS(T2T, T2W, T2P * T2S); | ||
|  | 			      Rm[WS(rs, 4)] = FMA(T2T, T2S, T2P * T2W); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J; | ||
|  | 			 T4s = FMA(KP951056516, T4o, KP587785252 * T4r); | ||
|  | 			 T4D = FMA(KP951056516, T4B, KP587785252 * T4C); | ||
|  | 			 T4N = FNMS(KP951056516, T4C, KP587785252 * T4B); | ||
|  | 			 T4I = FNMS(KP951056516, T4r, KP587785252 * T4o); | ||
|  | 			 { | ||
|  | 			      E T4w, T4z, T4h, T4k; | ||
|  | 			      T4w = KP559016994 * (T4u - T4v); | ||
|  | 			      T4z = FNMS(KP250000000, T4y, T4x); | ||
|  | 			      T4A = T4w + T4z; | ||
|  | 			      T4M = T4z - T4w; | ||
|  | 			      T4h = KP559016994 * (T4d - T4g); | ||
|  | 			      T4k = FNMS(KP250000000, T4j, T4i); | ||
|  | 			      T4l = T4h + T4k; | ||
|  | 			      T4J = T4k - T4h; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4t, T4E, T4Q, T4S; | ||
|  | 			      T4t = T4l - T4s; | ||
|  | 			      T4E = T4A + T4D; | ||
|  | 			      Ip[0] = FNMS(TG, T4E, TD * T4t); | ||
|  | 			      Im[0] = FMA(TD, T4E, TG * T4t); | ||
|  | 			      T4Q = T4J - T4I; | ||
|  | 			      T4S = T4M + T4N; | ||
|  | 			      Ip[WS(rs, 8)] = FNMS(T4R, T4S, T4P * T4Q); | ||
|  | 			      Im[WS(rs, 8)] = FMA(T4P, T4S, T4R * T4Q); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T4F, T4G, T4K, T4O; | ||
|  | 			      T4F = T4s + T4l; | ||
|  | 			      T4G = T4A - T4D; | ||
|  | 			      Ip[WS(rs, 4)] = FNMS(T1T, T4G, T1R * T4F); | ||
|  | 			      Im[WS(rs, 4)] = FMA(T1R, T4G, T1T * T4F); | ||
|  | 			      T4K = T4I + T4J; | ||
|  | 			      T4O = T4M - T4N; | ||
|  | 			      Ip[WS(rs, 6)] = FNMS(T4L, T4O, T4H * T4K); | ||
|  | 			      Im[WS(rs, 6)] = FMA(T4H, T4O, T4L * T4K); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T1p, T1w, T22, T1X, T1J, T23, TU, T1W; | ||
|  | 			 T1p = FNMS(KP951056516, T1o, KP587785252 * T19); | ||
|  | 			 T1w = FNMS(KP951056516, T1v, KP587785252 * T1u); | ||
|  | 			 T22 = FMA(KP951056516, T1u, KP587785252 * T1v); | ||
|  | 			 T1X = FMA(KP951056516, T19, KP587785252 * T1o); | ||
|  | 			 { | ||
|  | 			      E T1H, T1I, TS, TT; | ||
|  | 			      T1H = FNMS(KP250000000, T1G, T1D); | ||
|  | 			      T1I = KP559016994 * (T1E - T1F); | ||
|  | 			      T1J = T1H - T1I; | ||
|  | 			      T23 = T1I + T1H; | ||
|  | 			      TS = FNMS(KP250000000, TR, TK); | ||
|  | 			      TT = KP559016994 * (TN - TQ); | ||
|  | 			      TU = TS - TT; | ||
|  | 			      T1W = TT + TS; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1q, T1K, T2e, T2g; | ||
|  | 			      T1q = TU - T1p; | ||
|  | 			      T1K = T1w + T1J; | ||
|  | 			      Rp[WS(rs, 1)] = FNMS(T1t, T1K, TJ * T1q); | ||
|  | 			      Rm[WS(rs, 1)] = FMA(T1t, T1q, TJ * T1K); | ||
|  | 			      T2e = T1W + T1X; | ||
|  | 			      T2g = T23 - T22; | ||
|  | 			      Rp[WS(rs, 7)] = FNMS(T2f, T2g, T2d * T2e); | ||
|  | 			      Rm[WS(rs, 7)] = FMA(T2f, T2e, T2d * T2g); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T1O, T1Q, T1Y, T24; | ||
|  | 			      T1O = TU + T1p; | ||
|  | 			      T1Q = T1J - T1w; | ||
|  | 			      Rp[WS(rs, 9)] = FNMS(T1P, T1Q, T1N * T1O); | ||
|  | 			      Rm[WS(rs, 9)] = FMA(T1P, T1O, T1N * T1Q); | ||
|  | 			      T1Y = T1W - T1X; | ||
|  | 			      T24 = T22 + T23; | ||
|  | 			      Rp[WS(rs, 3)] = FNMS(T21, T24, T1V * T1Y); | ||
|  | 			      Rm[WS(rs, 3)] = FMA(T21, T1Y, T1V * T24); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y; | ||
|  | 			 T3f = FNMS(KP951056516, T3e, KP587785252 * T37); | ||
|  | 			 T3N = FNMS(KP951056516, T3M, KP587785252 * T3L); | ||
|  | 			 T43 = FMA(KP951056516, T3L, KP587785252 * T3M); | ||
|  | 			 T3Z = FMA(KP951056516, T37, KP587785252 * T3e); | ||
|  | 			 { | ||
|  | 			      E T3I, T3J, T3y, T3z; | ||
|  | 			      T3I = FNMS(KP250000000, T3H, T3E); | ||
|  | 			      T3J = KP559016994 * (T3F - T3G); | ||
|  | 			      T3K = T3I - T3J; | ||
|  | 			      T42 = T3J + T3I; | ||
|  | 			      T3y = FNMS(KP250000000, T3x, T3i); | ||
|  | 			      T3z = KP559016994 * (T3p - T3w); | ||
|  | 			      T3A = T3y - T3z; | ||
|  | 			      T3Y = T3z + T3y; | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3B, T3O, T45, T46; | ||
|  | 			      T3B = T3f + T3A; | ||
|  | 			      T3O = T3K - T3N; | ||
|  | 			      Ip[WS(rs, 1)] = FNMS(TH, T3O, TE * T3B); | ||
|  | 			      Im[WS(rs, 1)] = FMA(TE, T3O, TH * T3B); | ||
|  | 			      T45 = T3Z + T3Y; | ||
|  | 			      T46 = T42 - T43; | ||
|  | 			      Ip[WS(rs, 9)] = FNMS(T1M, T46, T1L * T45); | ||
|  | 			      Im[WS(rs, 9)] = FMA(T1L, T46, T1M * T45); | ||
|  | 			 } | ||
|  | 			 { | ||
|  | 			      E T3S, T3W, T40, T44; | ||
|  | 			      T3S = T3A - T3f; | ||
|  | 			      T3W = T3K + T3N; | ||
|  | 			      Ip[WS(rs, 3)] = FNMS(T3V, T3W, T3R * T3S); | ||
|  | 			      Im[WS(rs, 3)] = FMA(T3R, T3W, T3V * T3S); | ||
|  | 			      T40 = T3Y - T3Z; | ||
|  | 			      T44 = T42 + T43; | ||
|  | 			      Ip[WS(rs, 5)] = FNMS(T41, T44, T3X * T40); | ||
|  | 			      Im[WS(rs, 5)] = FMA(T3X, T44, T41 * T40); | ||
|  | 			 } | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_CEXP, 1, 1 }, | ||
|  |      { TW_CEXP, 1, 3 }, | ||
|  |      { TW_CEXP, 1, 9 }, | ||
|  |      { TW_CEXP, 1, 19 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 20, "hc2cb2_20", twinstr, &GENUS, { 204, 92, 72, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb2_20) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb2_20, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #endif
 |