353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Complex DFTs of rank == 1 via six-step algorithm. */ | ||
|  | 
 | ||
|  | #include "mpi-dft.h"
 | ||
|  | #include "mpi-transpose.h"
 | ||
|  | #include "dft/dft.h"
 | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      solver super; | ||
|  |      rdftapply apply; /* apply_ddft_first or apply_ddft_last */ | ||
|  |      int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ | ||
|  | } S; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      plan_mpi_dft super; | ||
|  | 
 | ||
|  |      triggen *t; | ||
|  |      plan *cldt, *cld_ddft, *cld_dft; | ||
|  |      INT roff, ioff; | ||
|  |      int preserve_input; | ||
|  |      INT vn, xmin, xmax, xs, m, r; | ||
|  | } P; | ||
|  | 
 | ||
|  | static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi) | ||
|  | { | ||
|  |      void (*rotate)(triggen *, INT, R, R, R *) = t->rotate; | ||
|  |      INT im, iv; | ||
|  |      for (im = 0; im < m; ++im) | ||
|  | 	  for (iv = 0; iv < vn; ++iv) { | ||
|  | 	       /* TODO: modify/inline rotate function
 | ||
|  | 		  so that it can do whole vn vector at once? */ | ||
|  | 	       R c[2]; | ||
|  | 	       rotate(t, ir * im, *xr, *xi, c); | ||
|  | 	       *xr = c[0]; *xi = c[1]; | ||
|  | 	       xr += 2; xi += 2; | ||
|  | 	  } | ||
|  | } | ||
|  | 
 | ||
|  | /* radix-r DFT of size r*m.  This is equivalent to an m x r 2d DFT,
 | ||
|  |    plus twiddle factors between the size-m and size-r 1d DFTs, where | ||
|  |    the m dimension is initially distributed.  The output is transposed | ||
|  |    to r x m where the r dimension is distributed.  | ||
|  | 
 | ||
|  |    This algorithm follows the general sequence: | ||
|  |         global transpose (m x r -> r x m) | ||
|  |         DFTs of size m | ||
|  | 	multiply by twiddles + global transpose (r x m -> m x r) | ||
|  | 	DFTs of size r | ||
|  | 	global transpose (m x r -> r x m) | ||
|  |    where the multiplication by twiddles can come before or after | ||
|  |    the middle transpose.  The first/last transposes are omitted | ||
|  |    for SCRAMBLED_IN/OUT formats, respectively. | ||
|  | 
 | ||
|  |    However, we wish to exploit our dft-rank1-bigvec solver, which | ||
|  |    solves a vector of distributed DFTs via transpose+dft+transpose. | ||
|  |    Therefore, we can group *either* the DFTs of size m *or* the | ||
|  |    DFTs of size r with their surrounding transposes as a single | ||
|  |    distributed-DFT (ddft) plan.  These two variations correspond to | ||
|  |    apply_ddft_first or apply_ddft_last, respectively. | ||
|  | */ | ||
|  | 
 | ||
|  | static void apply_ddft_first(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      plan_dft *cld_dft; | ||
|  |      plan_rdft *cldt, *cld_ddft; | ||
|  |      INT roff, ioff, im, mmax, ms, r, vn; | ||
|  |      triggen *t; | ||
|  |      R *dI, *dO; | ||
|  | 
 | ||
|  |      /* distributed size-m DFTs, with output in m x r format */ | ||
|  |      cld_ddft = (plan_rdft *) ego->cld_ddft; | ||
|  |      cld_ddft->apply(ego->cld_ddft, I, O); | ||
|  | 
 | ||
|  |      cldt = (plan_rdft *) ego->cldt; | ||
|  |      if (ego->preserve_input || !cldt) I = O; | ||
|  | 
 | ||
|  |      /* twiddle multiplications, followed by 1d DFTs of size-r */ | ||
|  |      cld_dft = (plan_dft *) ego->cld_dft; | ||
|  |      roff = ego->roff; ioff = ego->ioff; | ||
|  |      mmax = ego->xmax; ms = ego->xs; | ||
|  |      t = ego->t; r = ego->r; vn = ego->vn; | ||
|  |      dI = O; dO = I; | ||
|  |      for (im = ego->xmin; im <= mmax; ++im) { | ||
|  | 	  do_twiddle(t, im, r, vn, dI+roff, dI+ioff); | ||
|  | 	  cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); | ||
|  | 	  dI += ms; dO += ms; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */ | ||
|  |      if (cldt)  | ||
|  | 	  cldt->apply((plan *) cldt, I, O); | ||
|  | } | ||
|  | 
 | ||
|  | static void apply_ddft_last(const plan *ego_, R *I, R *O) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      plan_dft *cld_dft; | ||
|  |      plan_rdft *cldt, *cld_ddft; | ||
|  |      INT roff, ioff, ir, rmax, rs, m, vn; | ||
|  |      triggen *t; | ||
|  |      R *dI, *dO0, *dO; | ||
|  | 
 | ||
|  |      /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */ | ||
|  |      cldt = (plan_rdft *) ego->cldt; | ||
|  |      if (cldt) { | ||
|  | 	  cldt->apply((plan *) cldt, I, O); | ||
|  | 	  dI = O; | ||
|  |      } | ||
|  |      else  | ||
|  | 	  dI = I; | ||
|  |      if (ego->preserve_input) dO = O; else dO = I; | ||
|  |      dO0 = dO; | ||
|  | 
 | ||
|  |      /* 1d DFTs of size m, followed by twiddle multiplications */ | ||
|  |      cld_dft = (plan_dft *) ego->cld_dft; | ||
|  |      roff = ego->roff; ioff = ego->ioff; | ||
|  |      rmax = ego->xmax; rs = ego->xs; | ||
|  |      t = ego->t; m = ego->m; vn = ego->vn; | ||
|  |      for (ir = ego->xmin; ir <= rmax; ++ir) { | ||
|  | 	  cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); | ||
|  | 	  do_twiddle(t, ir, m, vn, dO+roff, dO+ioff); | ||
|  | 	  dI += rs; dO += rs; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* distributed size-r DFTs, with output in r x m format */ | ||
|  |      cld_ddft = (plan_rdft *) ego->cld_ddft; | ||
|  |      cld_ddft->apply(ego->cld_ddft, dO0, O); | ||
|  | } | ||
|  | 
 | ||
|  | static int applicable(const S *ego, const problem *p_, | ||
|  | 		      const planner *plnr, | ||
|  | 		      INT *r, INT rblock[2], INT mblock[2]) | ||
|  | { | ||
|  |      const problem_mpi_dft *p = (const problem_mpi_dft *) p_; | ||
|  |      int n_pes; | ||
|  |      MPI_Comm_size(p->comm, &n_pes); | ||
|  |      return (1 | ||
|  | 	     && p->sz->rnk == 1 | ||
|  | 
 | ||
|  | 	     && ONLY_SCRAMBLEDP(p->flags) | ||
|  | 
 | ||
|  | 	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) | ||
|  |                                           && p->I != p->O)) | ||
|  | 
 | ||
|  | 	     && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last) | ||
|  | 	     && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first) | ||
|  | 
 | ||
|  | 	     && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */ | ||
|  |                  || !XM(dft_serial_applicable)(p)) | ||
|  | 
 | ||
|  | 	     /* disallow if dft-rank1-bigvec is applicable since the
 | ||
|  | 		data distribution may be slightly different (ugh!) */ | ||
|  | 	     && (p->vn < n_pes || p->flags) | ||
|  | 
 | ||
|  | 	     && (*r = XM(choose_radix)(p->sz->dims[0], n_pes, | ||
|  | 				       p->flags, p->sign, | ||
|  | 				       rblock, mblock)) | ||
|  | 
 | ||
|  | 	     /* ddft_first or last has substantial advantages in the
 | ||
|  | 		bigvec transpositions for the common case where | ||
|  | 		n_pes == n/r or r, respectively */ | ||
|  | 	     && (!NO_UGLYP(plnr) | ||
|  | 		 || !(*r == n_pes && ego->apply == apply_ddft_first) | ||
|  | 		 || !(p->sz->dims[0].n / *r == n_pes  | ||
|  | 		      && ego->apply == apply_ddft_last)) | ||
|  | 	  ); | ||
|  | } | ||
|  | 
 | ||
|  | static void awake(plan *ego_, enum wakefulness wakefulness) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_awake)(ego->cldt, wakefulness); | ||
|  |      X(plan_awake)(ego->cld_dft, wakefulness); | ||
|  |      X(plan_awake)(ego->cld_ddft, wakefulness); | ||
|  | 
 | ||
|  |      switch (wakefulness) { | ||
|  |          case SLEEPY: | ||
|  |               X(triggen_destroy)(ego->t); ego->t = 0; | ||
|  |               break; | ||
|  |          default: | ||
|  |               ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m); | ||
|  |               break; | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static void destroy(plan *ego_) | ||
|  | { | ||
|  |      P *ego = (P *) ego_; | ||
|  |      X(plan_destroy_internal)(ego->cldt); | ||
|  |      X(plan_destroy_internal)(ego->cld_dft); | ||
|  |      X(plan_destroy_internal)(ego->cld_ddft); | ||
|  | } | ||
|  | 
 | ||
|  | static void print(const plan *ego_, printer *p) | ||
|  | { | ||
|  |      const P *ego = (const P *) ego_; | ||
|  |      p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))", | ||
|  | 	      ego->r, | ||
|  | 	      ego->super.apply == apply_ddft_first ? "/first" : "/last", | ||
|  | 	      ego->preserve_input==2 ?"/p":"", | ||
|  | 	      ego->cld_ddft, ego->cld_dft, ego->cldt); | ||
|  | } | ||
|  | 
 | ||
|  | static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | ||
|  | { | ||
|  |      const S *ego = (const S *) ego_; | ||
|  |      const problem_mpi_dft *p; | ||
|  |      P *pln; | ||
|  |      plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0; | ||
|  |      R *ri, *ii, *ro, *io, *I, *O; | ||
|  |      INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb; | ||
|  |      int my_pe, n_pes, preserve_input, ddft_first; | ||
|  |      dtensor *sz; | ||
|  |      static const plan_adt padt = { | ||
|  |           XM(dft_solve), awake, print, destroy | ||
|  |      }; | ||
|  | 
 | ||
|  |      UNUSED(ego); | ||
|  | 
 | ||
|  |      if (!applicable(ego, p_, plnr, &r, rblock, mblock)) | ||
|  |           return (plan *) 0; | ||
|  | 
 | ||
|  |      p = (const problem_mpi_dft *) p_; | ||
|  | 
 | ||
|  |      MPI_Comm_rank(p->comm, &my_pe); | ||
|  |      MPI_Comm_size(p->comm, &n_pes); | ||
|  | 
 | ||
|  |      m = p->sz->dims[0].n / r; | ||
|  | 
 | ||
|  |      /* some hackery so that we can plan both ddft_first and ddft_last
 | ||
|  | 	as if they were ddft_first */ | ||
|  |      if ((ddft_first = (ego->apply == apply_ddft_first))) { | ||
|  | 	  rp = r; mp = m; | ||
|  | 	  mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB]; | ||
|  | 	  mpb = XM(block)(mp, mpblock[OB], my_pe); | ||
|  |      } | ||
|  |      else { | ||
|  | 	  rp = m; mp = r; | ||
|  | 	  mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB]; | ||
|  | 	  mpb = XM(block)(mp, mpblock[IB], my_pe); | ||
|  |      } | ||
|  | 
 | ||
|  |      preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); | ||
|  | 
 | ||
|  |      sz = XM(mkdtensor)(1); | ||
|  |      sz->dims[0].n = mp; | ||
|  |      sz->dims[0].b[IB] = mpblock[IB]; | ||
|  |      sz->dims[0].b[OB] = mpblock[OB]; | ||
|  |      I = (ddft_first || !preserve_input) ? p->I : p->O; | ||
|  |      O = p->O; | ||
|  |      cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn, | ||
|  | 						      I, O, p->comm, p->sign, | ||
|  | 						      RANK1_BIGVEC_ONLY)); | ||
|  |      if (XM(any_true)(!cld_ddft, p->comm)) goto nada; | ||
|  | 
 | ||
|  |      I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2); | ||
|  |      O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,  | ||
|  | 	       rp * p->vn * 2); | ||
|  |      X(extract_reim)(p->sign, I, &ri, &ii); | ||
|  |      X(extract_reim)(p->sign, O, &ro, &io); | ||
|  |      cld_dft = X(mkplan_d)(plnr, | ||
|  | 			X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2), | ||
|  | 					   X(mktensor_1d)(p->vn, 2, 2), | ||
|  | 					   ri, ii, ro, io)); | ||
|  |      if (XM(any_true)(!cld_dft, p->comm)) goto nada; | ||
|  |       | ||
|  |      if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */ | ||
|  | 	  I = (ddft_first && preserve_input) ? p->O : p->I; | ||
|  | 	  O = p->O; | ||
|  | 	  cldt = X(mkplan_d)(plnr, | ||
|  | 			     XM(mkproblem_transpose)( | ||
|  | 				  m, r, p->vn * 2, | ||
|  | 				  I, O, | ||
|  | 				  ddft_first ? mblock[OB] : mblock[IB], | ||
|  | 				  ddft_first ? rblock[OB] : rblock[IB], | ||
|  | 				  p->comm, 0)); | ||
|  | 	  if (XM(any_true)(!cldt, p->comm)) goto nada;	   | ||
|  |      } | ||
|  | 
 | ||
|  |      pln = MKPLAN_MPI_DFT(P, &padt, ego->apply); | ||
|  | 
 | ||
|  |      pln->cld_ddft = cld_ddft; | ||
|  |      pln->cld_dft = cld_dft; | ||
|  |      pln->cldt = cldt; | ||
|  |      pln->preserve_input = preserve_input; | ||
|  |      X(extract_reim)(p->sign, p->O, &ro, &io); | ||
|  |      pln->roff = ro - p->O; | ||
|  |      pln->ioff = io - p->O; | ||
|  |      pln->vn = p->vn; | ||
|  |      pln->m = m; | ||
|  |      pln->r = r; | ||
|  |      pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe; | ||
|  |      pln->xmax = pln->xmin + mpb - 1; | ||
|  |      pln->xs = rp * p->vn * 2; | ||
|  |      pln->t = 0; | ||
|  | 
 | ||
|  |      X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops); | ||
|  |      if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops); | ||
|  |      { | ||
|  |           double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn; | ||
|  |           pln->super.super.ops.mul += 8 * n0; | ||
|  |           pln->super.super.ops.add += 4 * n0; | ||
|  |           pln->super.super.ops.other += 8 * n0; | ||
|  |      } | ||
|  | 
 | ||
|  |      return &(pln->super.super); | ||
|  | 
 | ||
|  |  nada: | ||
|  |      X(plan_destroy_internal)(cldt); | ||
|  |      X(plan_destroy_internal)(cld_dft); | ||
|  |      X(plan_destroy_internal)(cld_ddft); | ||
|  |      return (plan *) 0; | ||
|  | } | ||
|  | 
 | ||
|  | static solver *mksolver(rdftapply apply, int preserve_input) | ||
|  | { | ||
|  |      static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 }; | ||
|  |      S *slv = MKSOLVER(S, &sadt); | ||
|  |      slv->apply = apply; | ||
|  |      slv->preserve_input = preserve_input; | ||
|  |      return &(slv->super); | ||
|  | } | ||
|  | 
 | ||
|  | void XM(dft_rank1_register)(planner *p) | ||
|  | { | ||
|  |      rdftapply apply[] = { apply_ddft_first, apply_ddft_last }; | ||
|  |      unsigned int iapply; | ||
|  |      int preserve_input; | ||
|  |      for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply) | ||
|  | 	  for (preserve_input = 0; preserve_input <= 1; ++preserve_input) | ||
|  | 	       REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input)); | ||
|  | } |