furnace/src/engine/platform/sound/es550x/es5506.cpp

788 lines
23 KiB
C++
Raw Normal View History

/*
License: BSD-3-Clause
see https://github.com/cam900/vgsound_emu/LICENSE for more details
Copyright holder(s): cam900
Ensoniq ES5506 emulation core
see es550x.cpp for more info
*/
#include "es5506.hpp"
// Internal functions
void es5506_core::tick()
{
// CLKIN
if (m_clkin.tick())
{
// BCLK
if (m_clkin.m_edge.m_changed && (!m_mode.bclk_en)) // BCLK is freely running clock
{
if (m_bclk.tick())
{
m_intf.bclk(m_bclk.current_edge());
// Serial output
if (!m_mode.lrclk_en)
{
if (m_bclk.falling_edge())
{
// LRCLK
if (m_lrclk.tick())
{
m_intf.lrclk(m_lrclk.current_edge());
if (m_lrclk.rising_edge())
{
m_w_st_curr = m_w_st;
m_w_end_curr = m_w_end;
}
if (m_lrclk.falling_edge()) // update width
m_lrclk.set_width_latch(m_lr_end);
}
}
}
// WCLK
if (!m_mode.wclk_en)
{
if (!m_mode.lrclk_en)
{
if (m_lrclk.m_edge.m_changed)
m_wclk = 0;
}
if (m_bclk.falling_edge())
{
if (m_wclk == m_w_st_curr)
{
m_intf.wclk(true);
if (m_lrclk.current_edge())
{
for (int i = 0; i < 6; i++)
{
// copy output
m_output[i] = m_output_temp[i];
m_output_latch[i] = m_ch[i];
m_output_temp[i].reset();
// clamp to 20 bit (upper 3 bits are overflow guard bits)
m_output_latch[i].m_left = clamp<s32>(m_output_latch[i].m_left, -0x80000, 0x7ffff);
m_output_latch[i].m_right = clamp<s32>(m_output_latch[i].m_right, -0x80000, 0x7ffff);
// set signed
if (m_output_latch[i].m_left < 0)
m_output_temp[i].m_left = -1;
if (m_output_latch[i].m_right < 0)
m_output_temp[i].m_right = -1;
}
}
m_wclk_lr = m_lrclk.current_edge();
m_output_bit = 20;
}
if (m_wclk < m_w_end_curr)
{
s8 output_bit = --m_output_bit;
if (m_output_bit >= 0)
{
for (int i = 0; i < 6; i++)
{
if (m_wclk_lr) // Right output
m_output_temp[i].m_right = (m_output_temp[i].m_left << 1) | bitfield(m_output_latch[i].m_right, output_bit);
else // Left output
m_output_temp[i].m_left = (m_output_temp[i].m_left << 1) | bitfield(m_output_latch[i].m_left, output_bit);
}
}
}
if (m_wclk == m_w_end_curr)
m_intf.wclk(false);
m_wclk++;
}
}
}
}
// /CAS, E
if (m_clkin.falling_edge()) // falling edge triggers /CAS, E clock
{
// /CAS
if (m_cas.tick())
{
// single OTTO master mode, /CAS high, E low: get sample address
// single OTTO early mode, /CAS falling, E high: get sample address
if (m_cas.falling_edge())
{
if (!m_e.current_edge())
{
// single OTTO master mode, /CAS low, E low: fetch sample
if (m_mode.master)
m_voice[m_voice_cycle].fetch(m_voice_cycle, m_voice_fetch);
}
else if (m_e.current_edge())
{
// dual OTTO slave mode, /CAS low, E high: fetch sample
if (m_mode.dual && (!m_mode.master)) // Dual OTTO, slave mode
m_voice[m_voice_cycle].fetch(m_voice_cycle, m_voice_fetch);
}
}
}
// E
if (m_e.tick())
{
m_intf.e(m_e.current_edge());
if (m_e.rising_edge())
{
m_host_intf.m_rw = m_host_intf.m_rw_strobe;
m_host_intf.m_host_access = m_host_intf.m_host_access_strobe;
}
else if (m_e.falling_edge())
{
m_host_intf.m_host_access = false;
voice_tick();
}
if (m_e.current_edge()) // Host interface
{
if (m_host_intf.m_host_access)
{
if (m_host_intf.m_rw && (m_e.cycle() == 0)) // Read
{
m_hd = read(m_ha);
m_host_intf.m_host_access = false;
}
else if ((!m_host_intf.m_rw) && (m_e.cycle() == 2)) // Write
write(m_ha, m_hd);
}
}
else if (!m_e.current_edge())
{
if (m_e.cycle() == 2)
{
// reset host access state
m_hd = 0;
m_host_intf.m_host_access_strobe = false;
}
}
}
}
}
}
// less cycle accurate, but less CPU heavy routine
void es5506_core::tick_perf()
{
// output
if (((!m_mode.lrclk_en) && (!m_mode.bclk_en) && (!m_mode.bclk_en)) && (m_w_st < m_w_end))
{
const int output_bits = 20 - (m_w_end - m_w_st);
if (output_bits < 20)
{
for (int c = 0; c < 6; c++)
{
m_output[c].m_left = clamp<s32>(m_ch[c].m_left, -0x80000, 0x7ffff) >> output_bits;
m_output[c].m_right = clamp<s32>(m_ch[c].m_right, -0x80000, 0x7ffff) >> output_bits;
}
}
}
else
{
for (int c = 0; c < 6; c++)
{
m_output[c].m_left = 0;
m_output[c].m_right = 0;
}
}
// update
// falling edge
m_e.m_edge.set(false);
m_intf.e(false);
m_host_intf.m_host_access = m_host_intf.m_host_access_strobe = false;
m_voice[m_voice_cycle].fetch(m_voice_cycle, m_voice_fetch);
voice_tick();
// rising edge
m_e.m_edge.set(true);
m_intf.e(true);
m_host_intf.m_rw = m_host_intf.m_rw_strobe;
m_host_intf.m_host_access = m_host_intf.m_host_access_strobe;
// falling edge
m_e.m_edge.set(false);
m_intf.e(false);
m_host_intf.m_host_access = m_host_intf.m_host_access_strobe = false;
m_voice[m_voice_cycle].fetch(m_voice_cycle, m_voice_fetch);
voice_tick();
// rising edge
m_e.m_edge.set(true);
m_intf.e(true);
m_host_intf.m_rw = m_host_intf.m_rw_strobe;
m_host_intf.m_host_access = m_host_intf.m_host_access_strobe;
}
void es5506_core::voice_tick()
{
// Voice updates every 2 E clock cycle (or 4 BCLK clock cycle)
if (bitfield(m_voice_fetch++, 0))
{
// Update voice
m_voice[m_voice_cycle].tick(m_voice_cycle);
// Refresh output
if ((++m_voice_cycle) > clamp<u8>(m_active, 4, 31)) // 5 ~ 32 voices
{
m_voice_cycle = 0;
for (auto & elem : m_ch)
elem.reset();
for (auto & elem : m_voice)
{
const u8 ca = bitfield(elem.m_cr.ca, 0, 3);
if (ca < 6)
{
m_ch[ca].m_left += elem.m_ch.m_left;
m_ch[ca].m_right += elem.m_ch.m_right;
}
elem.m_ch.reset();
}
}
m_voice_fetch = 0;
}
}
void es5506_core::voice_t::fetch(u8 voice, u8 cycle)
{
m_alu.m_sample[cycle] = m_host.m_intf.read_sample(voice, bitfield(m_cr.bs, 0, 1), bitfield(m_alu.get_accum_integer() + cycle, 0, m_alu.m_integer));
if (m_cr.cmpd) // Decompress (Upper 8 bit is used for compressed format)
m_alu.m_sample[cycle] = decompress(bitfield(m_alu.m_sample[cycle], 8, 8));
}
void es5506_core::voice_t::tick(u8 voice)
{
m_ch.reset();
// Filter execute
m_filter.tick(m_alu.interpolation());
if (m_alu.busy())
{
if (!m_mute)
{
// Send to output
m_ch.m_left = volume_calc(sign_ext<s32>(m_filter.m_o4_1, 16), m_lvol);
m_ch.m_right = volume_calc(sign_ext<s32>(m_filter.m_o4_1, 16), m_rvol);
}
// ALU execute
if (m_alu.tick())
m_alu.loop_exec();
}
// Envelope
if (m_ecount != 0)
{
// Left and Right volume
if (bitfield(m_lvramp, 0, 8) != 0)
m_lvol = clamp<s32>(m_lvol + sign_ext<s32>(bitfield(m_lvramp, 0, 8), 8), 0, 0xffff);
if (bitfield(m_rvramp, 0, 8) != 0)
m_rvol = clamp<s32>(m_rvol + sign_ext<s32>(bitfield(m_rvramp, 0, 8), 8), 0, 0xffff);
// Filter coeffcient
if ((m_k1ramp.ramp != 0) && ((m_k1ramp.slow == 0) || (bitfield(m_filtcount, 0, 3) == 0)))
m_filter.m_k1 = clamp<s32>(m_filter.m_k1 + sign_ext<s32>(m_k1ramp.ramp, 8), 0, 0xffff);
if ((m_k2ramp.ramp != 0) && ((m_k2ramp.slow == 0) || (bitfield(m_filtcount, 0, 3) == 0)))
m_filter.m_k2 = clamp<s32>(m_filter.m_k2 + sign_ext<s32>(m_k2ramp.ramp, 8), 0, 0xffff);
m_ecount--;
}
m_filtcount = bitfield(m_filtcount + 1, 0, 3);
// Update IRQ
m_alu.irq_exec(m_host.m_intf, m_host.m_irqv, voice);
}
// Compressed format
s16 es5506_core::voice_t::decompress(u8 sample)
{
u8 exponent = bitfield(sample, 5, 3);
u8 mantissa = bitfield(sample, 0, 5);
return (exponent > 0) ?
s16(((bitfield(mantissa, 4) ? 0x10 : ~0x1f) | bitfield(mantissa, 0, 4)) << (4 + (exponent - 1))) :
s16(((bitfield(mantissa, 4) ? ~0xf : 0) | bitfield(mantissa, 0, 4)) << 4);
}
// volume calculation
s32 es5506_core::voice_t::volume_calc(u16 volume, s32 in)
{
u8 exponent = bitfield(volume, 12, 4);
u8 mantissa = bitfield(volume, 4, 8);
return (in * s32(0x100 | mantissa)) >> (20 - exponent);
}
void es5506_core::reset()
{
es550x_shared_core::reset();
for (auto & elem : m_voice)
elem.reset();
m_read_latch = 0xffffffff;
m_write_latch = 0xffffffff;
m_w_st = 0;
m_w_end = 0;
m_lr_end = 0;
m_w_st_curr = 0;
m_w_end_curr = 0;
m_mode.reset();
m_bclk.reset();
m_lrclk.reset(32);
m_wclk = 0;
m_wclk_lr = false;
m_output_bit = 0;
for (auto & elem : m_ch)
elem.reset();
for (auto & elem : m_output)
elem.reset();
for (auto & elem : m_output_temp)
elem.reset();
for (auto & elem : m_output_latch)
elem.reset();
}
void es5506_core::voice_t::reset()
{
es550x_shared_core::es550x_voice_t::reset();
m_lvol = 0;
m_lvramp = 0;
m_rvol = 0;
m_rvramp = 0;
m_ecount = 0;
m_k2ramp.reset();
m_k1ramp.reset();
m_filtcount = 0;
m_ch.reset();
m_mute = false;
}
// Accessors
u8 es5506_core::host_r(u8 address)
{
if (!m_host_intf.m_host_access)
{
m_ha = address;
if (m_e.rising_edge()) // update directly
m_hd = read(m_ha, true);
else
{
m_host_intf.m_rw_strobe = true;
m_host_intf.m_host_access_strobe = true;
}
}
return m_hd;
}
void es5506_core::host_w(u8 address, u8 data)
{
if (!m_host_intf.m_host_access)
{
m_ha = address;
m_hd = data;
if (m_e.rising_edge()) // update directly
write(m_ha, m_hd, true);
else
{
m_host_intf.m_rw_strobe = false;
m_host_intf.m_host_access_strobe = true;
}
}
}
u8 es5506_core::read(u8 address, bool cpu_access)
{
const u8 byte = bitfield(address, 0, 2); // byte select
const u8 shift = 24 - (byte << 3);
if (byte != 0) // Return already latched register if not highest byte is accessing
return bitfield(m_read_latch, shift, 8);
address = bitfield(address, 2, 4); // 4 bit address for CPU access
// get read register
m_read_latch = regs_r(m_page, address, cpu_access);
return bitfield(m_read_latch, 24, 8);
}
void es5506_core::write(u8 address, u8 data, bool cpu_access)
{
const u8 byte = bitfield(address, 0, 2); // byte select
const u8 shift = 24 - (byte << 3);
address = bitfield(address, 2, 4); // 4 bit address for CPU access
// Update register latch
m_write_latch = (m_write_latch & ~(0xff << shift)) | (u32(data) << shift);
if (byte != 3) // Wait until lowest byte is writed
return;
regs_w(m_page, address, m_write_latch, cpu_access);
// Reset latch
m_write_latch = 0;
}
u32 es5506_core::regs_r(u8 page, u8 address, bool cpu_access)
{
u32 read_latch = 0xffffffff;
if (address >= 13) // Global registers
{
switch (address)
{
case 13: // POT (Pot A/D Register)
read_latch = (read_latch & ~0x3ff) | bitfield(m_intf.adc_r(), 0, 10);
break;
case 14: // IRQV (Interrupting voice vector)
read_latch = (read_latch & ~0x9f) | (m_irqv.irqb ? 0x80 : 0) | bitfield(m_irqv.voice, 0, 5);
if (cpu_access)
{
m_irqv.clear();
if (bitfield(read_latch, 7) != m_irqv.irqb)
m_voice[m_irqv.voice].m_alu.irq_update(m_intf, m_irqv);
}
break;
case 15: // PAGE (Page select register)
read_latch = (read_latch & ~0x7f) | bitfield(m_page, 0, 7);
break;
}
}
else
{
if (bitfield(page, 6)) // Channel registers are Write only
{
if (!cpu_access) // CPU can't read here
{
switch (address)
{
case 0: // CH0L (Channel 0 Left)
case 2: // CH1L (Channel 1 Left)
case 4: // CH2L (Channel 2 Left)
case 6: // CH3L (Channel 3 Left)
case 8: // CH4L (Channel 4 Left)
case 10: // CH5L (Channel 5 Left)
read_latch = m_ch[bitfield(address, 1, 3)].m_left;
break;
case 1: // CH0R (Channel 0 Right)
case 3: // CH1R (Channel 1 Right)
case 5: // CH2R (Channel 2 Right)
case 7: // CH3R (Channel 3 Right)
case 9: // CH4R (Channel 4 Right)
case 11: // CH5R (Channel 5 Right)
read_latch = m_ch[bitfield(address, 1, 3)].m_right;
break;
}
}
}
else
{
const u8 voice = bitfield(page, 0, 5); // Voice select
voice_t &v = m_voice[voice];
if (bitfield(page, 5)) // Page 32 - 63
{
switch (address)
{
case 0: // CR (Control Register)
read_latch = (read_latch & ~0xffff) |
(v.m_alu.m_cr.stop0 ? 0x0001 : 0x0000)
| (v.m_alu.m_cr.stop1 ? 0x0002 : 0x0000)
| (v.m_alu.m_cr.lei ? 0x0004 : 0x0000)
| (v.m_alu.m_cr.lpe ? 0x0008 : 0x0000)
| (v.m_alu.m_cr.ble ? 0x0010 : 0x0000)
| (v.m_alu.m_cr.irqe ? 0x0020 : 0x0000)
| (v.m_alu.m_cr.dir ? 0x0040 : 0x0000)
| (v.m_alu.m_cr.irq ? 0x0080 : 0x0000)
| (bitfield(v.m_filter.m_lp, 0, 2) << 8)
| (bitfield(v.m_cr.ca, 0, 3) << 10)
| (v.m_cr.cmpd ? 0x2000 : 0x0000)
| (bitfield(v.m_cr.bs, 0, 2) << 14);
break;
case 1: // START (Loop Start Register)
read_latch = (read_latch & ~0xfffff800) | (v.m_alu.m_start & 0xfffff800);
break;
case 2: // END (Loop End Register)
read_latch = (read_latch & ~0xffffff80) | (v.m_alu.m_end & 0xffffff80);
break;
case 3: // ACCUM (Accumulator Register)
read_latch = v.m_alu.m_accum;
break;
case 4: // O4(n-1) (Filter 4 Temp Register)
if (cpu_access)
read_latch = (read_latch & ~0x3ffff) | bitfield(v.m_filter.m_o4_1, 0, 18);
else
read_latch = v.m_filter.m_o4_1;
break;
case 5: // O3(n-2) (Filter 3 Temp Register #2)
if (cpu_access)
read_latch = (read_latch & ~0x3ffff) | bitfield(v.m_filter.m_o3_2, 0, 18);
else
read_latch = v.m_filter.m_o3_2;
break;
case 6: // O3(n-1) (Filter 3 Temp Register #1)
if (cpu_access)
read_latch = (read_latch & ~0x3ffff) | bitfield(v.m_filter.m_o3_1, 0, 18);
else
read_latch = v.m_filter.m_o3_1;
break;
case 7: // O2(n-2) (Filter 2 Temp Register #2)
if (cpu_access)
read_latch = (read_latch & ~0x3ffff) | bitfield(v.m_filter.m_o2_2, 0, 18);
else
read_latch = v.m_filter.m_o2_2;
break;
case 8: // O2(n-1) (Filter 2 Temp Register #1)
if (cpu_access)
read_latch = (read_latch & ~0x3ffff) | bitfield(v.m_filter.m_o2_1, 0, 18);
else
read_latch = v.m_filter.m_o2_1;
break;
case 9: // O1(n-1) (Filter 1 Temp Register)
if (cpu_access)
read_latch = (read_latch & ~0x3ffff) | bitfield(v.m_filter.m_o1_1, 0, 18);
else
read_latch = v.m_filter.m_o1_1;
break;
case 10: // W_ST (Word Clock Start Register)
read_latch = (read_latch & ~0x7f) | bitfield(m_w_st, 0, 7);
break;
case 11: // W_END (Word Clock End Register)
read_latch = (read_latch & ~0x7f) | bitfield(m_w_end, 0, 7);
break;
case 12: // LR_END (Left/Right Clock End Register)
read_latch = (read_latch & ~0x7f) | bitfield(m_lr_end, 0, 7);
break;
}
}
else // Page 0 - 31
{
switch (address)
{
case 0: // CR (Control Register)
read_latch = (read_latch & ~0xffff) |
(v.m_alu.m_cr.stop0 ? 0x0001 : 0x0000)
| (v.m_alu.m_cr.stop1 ? 0x0002 : 0x0000)
| (v.m_alu.m_cr.lei ? 0x0004 : 0x0000)
| (v.m_alu.m_cr.lpe ? 0x0008 : 0x0000)
| (v.m_alu.m_cr.ble ? 0x0010 : 0x0000)
| (v.m_alu.m_cr.irqe ? 0x0020 : 0x0000)
| (v.m_alu.m_cr.dir ? 0x0040 : 0x0000)
| (v.m_alu.m_cr.irq ? 0x0080 : 0x0000)
| (bitfield(v.m_filter.m_lp, 0, 2) << 8)
| (bitfield(v.m_cr.ca, 0, 3) << 10)
| (v.m_cr.cmpd ? 0x2000 : 0x0000)
| (bitfield(v.m_cr.bs, 0, 2) << 14);
break;
case 1: // FC (Frequency Control)
read_latch = (read_latch & ~0x1ffff) | bitfield(v.m_alu.m_fc, 0, 17);
break;
case 2: // LVOL (Left Volume)
read_latch = (read_latch & ~0xffff) | bitfield(v.m_lvol, 0, 16);
break;
case 3: // LVRAMP (Left Volume Ramp)
read_latch = (read_latch & ~0xff00) | (bitfield(v.m_lvramp, 0, 8) << 8);
break;
case 4: // RVOL (Right Volume)
read_latch = (read_latch & ~0xffff) | bitfield(v.m_rvol, 0, 16);
break;
case 5: // RVRAMP (Right Volume Ramp)
read_latch = (read_latch & ~0xff00) | (bitfield(v.m_rvramp, 0, 8) << 8);
break;
case 6: // ECOUNT (Envelope Counter)
read_latch = (read_latch & ~0x01ff) | bitfield(v.m_ecount, 0, 9);
break;
case 7: // K2 (Filter Cutoff Coefficient #2)
read_latch = (read_latch & ~0xffff) | bitfield(v.m_filter.m_k2, 0, 16);
break;
case 8: // K2RAMP (Filter Cutoff Coefficient #2 Ramp)
read_latch = (read_latch & ~0xff01) | (bitfield(v.m_k2ramp.ramp, 0, 8) << 8) | (v.m_k2ramp.slow ? 0x0001 : 0x0000);
break;
case 9: // K1 (Filter Cutoff Coefficient #1)
read_latch = (read_latch & ~0xffff) | bitfield(v.m_filter.m_k1, 0, 16);
break;
case 10: // K1RAMP (Filter Cutoff Coefficient #1 Ramp)
read_latch = (read_latch & ~0xff01) | (bitfield(v.m_k1ramp.ramp, 0, 8) << 8) | (v.m_k1ramp.slow ? 0x0001 : 0x0000);
break;
case 11: // ACT (Number of voices)
read_latch = (read_latch & ~0x1f) | bitfield(m_active, 0, 5);
break;
case 12: // MODE (Global Mode)
read_latch = (read_latch & ~0x1f) |
(m_mode.lrclk_en ? 0x01 : 0x00)
| (m_mode.wclk_en ? 0x02 : 0x00)
| (m_mode.bclk_en ? 0x04 : 0x00)
| (m_mode.master ? 0x08 : 0x00)
| (m_mode.dual ? 0x10 : 0x00);
break;
}
}
}
}
return read_latch;
}
void es5506_core::regs_w(u8 page, u8 address, u32 data, bool cpu_access)
{
if (address >= 13) // Global registers
{
switch (address)
{
case 13: // POT (Pot A/D Register)
// Read only
break;
case 14: // IRQV (Interrupting voice vector)
// Read only
break;
case 15: // PAGE (Page select register)
m_page = bitfield(data, 0, 7);
break;
}
}
else
{
if (bitfield(page, 6)) // Channel registers are Write only, and for test purposes
{
switch (address)
{
case 0: // CH0L (Channel 0 Left)
case 2: // CH1L (Channel 1 Left)
case 4: // CH2L (Channel 2 Left)
case 6: // CH3L (Channel 3 Left)
case 8: // CH4L (Channel 4 Left)
case 10: // CH5L (Channel 5 Left)
m_ch[bitfield(address, 1, 3)].m_left = sign_ext<s32>(bitfield(data, 0, 23), 23);
break;
case 1: // CH0R (Channel 0 Right)
case 3: // CH1R (Channel 1 Right)
case 5: // CH2R (Channel 2 Right)
case 7: // CH3R (Channel 3 Right)
case 9: // CH4R (Channel 4 Right)
case 11: // CH5R (Channel 5 Right)
m_ch[bitfield(address, 1, 3)].m_right = sign_ext<s32>(bitfield(data, 0, 23), 23);
break;
}
}
else
{
const u8 voice = bitfield(page, 0, 5); // Voice select
voice_t &v = m_voice[voice];
if (bitfield(page, 5)) // Page 32 - 63
{
switch (address)
{
case 0: // CR (Control Register)
v.m_alu.m_cr.stop0 = bitfield(data, 0);
v.m_alu.m_cr.stop1 = bitfield(data, 1);
v.m_alu.m_cr.lei = bitfield(data, 2);
v.m_alu.m_cr.lpe = bitfield(data, 3);
v.m_alu.m_cr.ble = bitfield(data, 4);
v.m_alu.m_cr.irqe = bitfield(data, 5);
v.m_alu.m_cr.dir = bitfield(data, 6);
v.m_alu.m_cr.irq = bitfield(data, 7);
v.m_filter.m_lp = bitfield(data, 8, 2);
v.m_cr.ca = std::min<u8>(5, bitfield(data, 10, 3));
v.m_cr.cmpd = bitfield(data, 13);
v.m_cr.bs = bitfield(data, 14, 2);
break;
case 1: // START (Loop Start Register)
v.m_alu.m_start = data & 0xfffff800;
break;
case 2: // END (Loop End Register)
v.m_alu.m_end = data & 0xffffff80;
break;
case 3: // ACCUM (Accumulator Register)
v.m_alu.m_accum = data;
break;
case 4: // O4(n-1) (Filter 4 Temp Register)
v.m_filter.m_o4_1 = sign_ext<s32>(bitfield(data, 0, 18), 18);
break;
case 5: // O3(n-2) (Filter 3 Temp Register #2)
v.m_filter.m_o3_2 = sign_ext<s32>(bitfield(data, 0, 18), 18);
break;
case 6: // O3(n-1) (Filter 3 Temp Register #1)
v.m_filter.m_o3_1 = sign_ext<s32>(bitfield(data, 0, 18), 18);
break;
case 7: // O2(n-2) (Filter 2 Temp Register #2)
v.m_filter.m_o2_2 = sign_ext<s32>(bitfield(data, 0, 18), 18);
break;
case 8: // O2(n-1) (Filter 2 Temp Register #1)
v.m_filter.m_o2_1 = sign_ext<s32>(bitfield(data, 0, 18), 18);
break;
case 9: // O1(n-1) (Filter 1 Temp Register)
v.m_filter.m_o1_1 = sign_ext<s32>(bitfield(data, 0, 18), 18);
break;
case 10: // W_ST (Word Clock Start Register)
m_w_st = bitfield(data, 0, 7);
break;
case 11: // W_END (Word Clock End Register)
m_w_end = bitfield(data, 0, 7);
break;
case 12: // LR_END (Left/Right Clock End Register)
m_lr_end = bitfield(data, 0, 7);
m_lrclk.set_width(m_lr_end);
break;
}
}
else // Page 0 - 31
{
switch (address)
{
case 0: // CR (Control Register)
v.m_alu.m_cr.stop0 = bitfield(data, 0);
v.m_alu.m_cr.stop1 = bitfield(data, 1);
v.m_alu.m_cr.lei = bitfield(data, 2);
v.m_alu.m_cr.lpe = bitfield(data, 3);
v.m_alu.m_cr.ble = bitfield(data, 4);
v.m_alu.m_cr.irqe = bitfield(data, 5);
v.m_alu.m_cr.dir = bitfield(data, 6);
v.m_alu.m_cr.irq = bitfield(data, 7);
v.m_filter.m_lp = bitfield(data, 8, 2);
v.m_cr.ca = std::min<u8>(5, bitfield(data, 10, 3));
v.m_cr.cmpd = bitfield(data, 13);
v.m_cr.bs = bitfield(data, 14, 2);
break;
case 1: // FC (Frequency Control)
v.m_alu.m_fc = bitfield(data, 0, 17);
break;
case 2: // LVOL (Left Volume)
v.m_lvol = bitfield(data, 0, 16);
break;
case 3: // LVRAMP (Left Volume Ramp)
v.m_lvramp = bitfield(data, 8, 8);
break;
case 4: // RVOL (Right Volume)
v.m_rvol = bitfield(data, 0, 16);
break;
case 5: // RVRAMP (Right Volume Ramp)
v.m_rvramp = bitfield(data, 8, 8);
break;
case 6: // ECOUNT (Envelope Counter)
v.m_ecount = bitfield(data, 0, 9);
break;
case 7: // K2 (Filter Cutoff Coefficient #2)
v.m_filter.m_k2 = bitfield(data, 0, 16);
break;
case 8: // K2RAMP (Filter Cutoff Coefficient #2 Ramp)
v.m_k2ramp.slow = bitfield(data, 0);
v.m_k2ramp.ramp = bitfield(data, 8, 8);
break;
case 9: // K1 (Filter Cutoff Coefficient #1)
v.m_filter.m_k1 = bitfield(data, 0, 16);
break;
case 10: // K1RAMP (Filter Cutoff Coefficient #1 Ramp)
v.m_k1ramp.slow = bitfield(data, 0);
v.m_k1ramp.ramp = bitfield(data, 8, 8);
break;
case 11: // ACT (Number of voices)
m_active = std::min<u8>(4, bitfield(data, 0, 5));
break;
case 12: // MODE (Global Mode)
m_mode.lrclk_en = bitfield(data, 0);
m_mode.wclk_en = bitfield(data, 1);
m_mode.bclk_en = bitfield(data, 2);
m_mode.master = bitfield(data, 3);
m_mode.dual = bitfield(data, 4);
break;
}
}
}
}
}