132 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			132 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "ifftw-mpi.h"
 | ||
|  | 
 | ||
|  | INT XM(num_blocks)(INT n, INT block) | ||
|  | { | ||
|  |      return (n + block - 1) / block; | ||
|  | } | ||
|  | 
 | ||
|  | int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm) | ||
|  | { | ||
|  |      int n_pes; | ||
|  |      MPI_Comm_size(comm, &n_pes); | ||
|  |      return n_pes >= XM(num_blocks)(n, block); | ||
|  | } | ||
|  | 
 | ||
|  | /* Pick a default block size for dividing a problem of size n among
 | ||
|  |    n_pes processes.  Divide as equally as possible, while minimizing | ||
|  |    the maximum block size among the processes as well as the number of | ||
|  |    processes with nonzero blocks. */ | ||
|  | INT XM(default_block)(INT n, int n_pes) | ||
|  | { | ||
|  |      return ((n + n_pes - 1) / n_pes); | ||
|  | } | ||
|  | 
 | ||
|  | /* For a given block size and dimension n, compute the block size 
 | ||
|  |    on the given process. */ | ||
|  | INT XM(block)(INT n, INT block, int which_block) | ||
|  | { | ||
|  |      INT d = n - which_block * block; | ||
|  |      return d <= 0 ? 0 : (d > block ? block : d); | ||
|  | } | ||
|  | 
 | ||
|  | static INT num_blocks_kind(const ddim *dim, block_kind k) | ||
|  | { | ||
|  |      return XM(num_blocks)(dim->n, dim->b[k]); | ||
|  | } | ||
|  | 
 | ||
|  | INT XM(num_blocks_total)(const dtensor *sz, block_kind k) | ||
|  | { | ||
|  |      if (FINITE_RNK(sz->rnk)) { | ||
|  | 	  int i; | ||
|  | 	  INT ntot = 1; | ||
|  | 	  for (i = 0; i < sz->rnk; ++i) | ||
|  | 	       ntot *= num_blocks_kind(sz->dims + i, k); | ||
|  | 	  return ntot; | ||
|  |      } | ||
|  |      else | ||
|  | 	  return 0; | ||
|  | } | ||
|  | 
 | ||
|  | int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe) | ||
|  | { | ||
|  |      return (which_pe >= XM(num_blocks_total)(sz, k)); | ||
|  | } | ||
|  | 
 | ||
|  | /* Given a non-idle process which_pe, computes the coordinate
 | ||
|  |    vector coords[rnk] giving the coordinates of a block in the | ||
|  |    matrix of blocks.  k specifies whether we are talking about | ||
|  |    the input or output data distribution. */ | ||
|  | void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe,  | ||
|  | 		     INT *coords) | ||
|  | { | ||
|  |      int i; | ||
|  |      A(!XM(idle_process)(sz, k, which_pe) && FINITE_RNK(sz->rnk)); | ||
|  |      for (i = sz->rnk - 1; i >= 0; --i) { | ||
|  | 	  INT nb = num_blocks_kind(sz->dims + i, k); | ||
|  | 	  coords[i] = which_pe % nb; | ||
|  | 	  which_pe /= nb; | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe) | ||
|  | { | ||
|  |      if (XM(idle_process)(sz, k, which_pe)) | ||
|  | 	  return 0; | ||
|  |      else { | ||
|  | 	  int i; | ||
|  | 	  INT N = 1, *coords; | ||
|  | 	  STACK_MALLOC(INT*, coords, sizeof(INT) * sz->rnk); | ||
|  | 	  XM(block_coords)(sz, k, which_pe, coords); | ||
|  | 	  for (i = 0; i < sz->rnk; ++i) | ||
|  | 	       N *= XM(block)(sz->dims[i].n, sz->dims[i].b[k], coords[i]); | ||
|  | 	  STACK_FREE(coords); | ||
|  | 	  return N; | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | /* returns whether sz is local for dims >= dim */ | ||
|  | int XM(is_local_after)(int dim, const dtensor *sz, block_kind k) | ||
|  | { | ||
|  |      if (FINITE_RNK(sz->rnk)) | ||
|  | 	  for (; dim < sz->rnk; ++dim) | ||
|  | 	       if (XM(num_blocks)(sz->dims[dim].n, sz->dims[dim].b[k]) > 1) | ||
|  | 		    return 0; | ||
|  |      return 1; | ||
|  | } | ||
|  | 
 | ||
|  | int XM(is_local)(const dtensor *sz, block_kind k) | ||
|  | { | ||
|  |      return XM(is_local_after)(0, sz, k); | ||
|  | } | ||
|  | 
 | ||
|  | /* Return whether sz is distributed for k according to a simple
 | ||
|  |    1d block distribution in the first or second dimensions */ | ||
|  | int XM(is_block1d)(const dtensor *sz, block_kind k) | ||
|  | { | ||
|  |      int i; | ||
|  |      if (!FINITE_RNK(sz->rnk)) return 0; | ||
|  |      for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ; | ||
|  |      return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k)); | ||
|  | 
 | ||
|  | } |