296 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			296 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:48 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 58 FP additions, 32 FP multiplications, | ||
|  |  * (or, 26 additions, 0 multiplications, 32 fused multiply/add), | ||
|  |  * 31 stack variables, 4 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); | ||
|  |      DK(KP414213562, +0.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { | ||
|  | 	       E T5, TL, Tj, TD, T8, TM, To, TE, Tc, TP, Tf, TQ, Tu, Tz, TR; | ||
|  | 	       E TO, TH, TG; | ||
|  | 	       { | ||
|  | 		    E T4, Ti, T3, Th, T1, T2; | ||
|  | 		    T4 = Cr[WS(csr, 4)]; | ||
|  | 		    Ti = Ci[WS(csi, 4)]; | ||
|  | 		    T1 = Cr[0]; | ||
|  | 		    T2 = Cr[WS(csr, 8)]; | ||
|  | 		    T3 = T1 + T2; | ||
|  | 		    Th = T1 - T2; | ||
|  | 		    T5 = FMA(KP2_000000000, T4, T3); | ||
|  | 		    TL = FNMS(KP2_000000000, T4, T3); | ||
|  | 		    Tj = FNMS(KP2_000000000, Ti, Th); | ||
|  | 		    TD = FMA(KP2_000000000, Ti, Th); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, T7, Tk, Tl, Tm, Tn; | ||
|  | 		    T6 = Cr[WS(csr, 2)]; | ||
|  | 		    T7 = Cr[WS(csr, 6)]; | ||
|  | 		    Tk = T6 - T7; | ||
|  | 		    Tl = Ci[WS(csi, 2)]; | ||
|  | 		    Tm = Ci[WS(csi, 6)]; | ||
|  | 		    Tn = Tl + Tm; | ||
|  | 		    T8 = T6 + T7; | ||
|  | 		    TM = Tl - Tm; | ||
|  | 		    To = Tk - Tn; | ||
|  | 		    TE = Tk + Tn; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tq, Ty, Tv, Tt; | ||
|  | 		    { | ||
|  | 			 E Ta, Tb, Tw, Tx; | ||
|  | 			 Ta = Cr[WS(csr, 1)]; | ||
|  | 			 Tb = Cr[WS(csr, 7)]; | ||
|  | 			 Tc = Ta + Tb; | ||
|  | 			 Tq = Ta - Tb; | ||
|  | 			 Tw = Ci[WS(csi, 1)]; | ||
|  | 			 Tx = Ci[WS(csi, 7)]; | ||
|  | 			 Ty = Tw + Tx; | ||
|  | 			 TP = Tw - Tx; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Td, Te, Tr, Ts; | ||
|  | 			 Td = Cr[WS(csr, 5)]; | ||
|  | 			 Te = Cr[WS(csr, 3)]; | ||
|  | 			 Tf = Td + Te; | ||
|  | 			 Tv = Td - Te; | ||
|  | 			 Tr = Ci[WS(csi, 5)]; | ||
|  | 			 Ts = Ci[WS(csi, 3)]; | ||
|  | 			 Tt = Tr + Ts; | ||
|  | 			 TQ = Tr - Ts; | ||
|  | 		    } | ||
|  | 		    Tu = Tq - Tt; | ||
|  | 		    Tz = Tv + Ty; | ||
|  | 		    TR = TP - TQ; | ||
|  | 		    TO = Tc - Tf; | ||
|  | 		    TH = Tq + Tt; | ||
|  | 		    TG = Ty - Tv; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9, Tg, TT, TU; | ||
|  | 		    T9 = FMA(KP2_000000000, T8, T5); | ||
|  | 		    Tg = Tc + Tf; | ||
|  | 		    R0[WS(rs, 4)] = FNMS(KP2_000000000, Tg, T9); | ||
|  | 		    R0[0] = FMA(KP2_000000000, Tg, T9); | ||
|  | 		    TT = FMA(KP2_000000000, TM, TL); | ||
|  | 		    TU = TO + TR; | ||
|  | 		    R0[WS(rs, 3)] = FNMS(KP1_414213562, TU, TT); | ||
|  | 		    R0[WS(rs, 7)] = FMA(KP1_414213562, TU, TT); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TV, TW, Tp, TA; | ||
|  | 		    TV = FNMS(KP2_000000000, T8, T5); | ||
|  | 		    TW = TQ + TP; | ||
|  | 		    R0[WS(rs, 2)] = FNMS(KP2_000000000, TW, TV); | ||
|  | 		    R0[WS(rs, 6)] = FMA(KP2_000000000, TW, TV); | ||
|  | 		    Tp = FMA(KP1_414213562, To, Tj); | ||
|  | 		    TA = FNMS(KP414213562, Tz, Tu); | ||
|  | 		    R1[WS(rs, 4)] = FNMS(KP1_847759065, TA, Tp); | ||
|  | 		    R1[0] = FMA(KP1_847759065, TA, Tp); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TB, TC, TJ, TK; | ||
|  | 		    TB = FNMS(KP1_414213562, To, Tj); | ||
|  | 		    TC = FMA(KP414213562, Tu, Tz); | ||
|  | 		    R1[WS(rs, 2)] = FNMS(KP1_847759065, TC, TB); | ||
|  | 		    R1[WS(rs, 6)] = FMA(KP1_847759065, TC, TB); | ||
|  | 		    TJ = FMA(KP1_414213562, TE, TD); | ||
|  | 		    TK = FMA(KP414213562, TG, TH); | ||
|  | 		    R1[WS(rs, 3)] = FNMS(KP1_847759065, TK, TJ); | ||
|  | 		    R1[WS(rs, 7)] = FMA(KP1_847759065, TK, TJ); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TN, TS, TF, TI; | ||
|  | 		    TN = FNMS(KP2_000000000, TM, TL); | ||
|  | 		    TS = TO - TR; | ||
|  | 		    R0[WS(rs, 5)] = FNMS(KP1_414213562, TS, TN); | ||
|  | 		    R0[WS(rs, 1)] = FMA(KP1_414213562, TS, TN); | ||
|  | 		    TF = FNMS(KP1_414213562, TE, TD); | ||
|  | 		    TI = FNMS(KP414213562, TH, TG); | ||
|  | 		    R1[WS(rs, 1)] = FNMS(KP1_847759065, TI, TF); | ||
|  | 		    R1[WS(rs, 5)] = FMA(KP1_847759065, TI, TF); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 16, "r2cb_16", { 26, 0, 32, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_16) (planner *p) { X(kr2c_register) (p, r2cb_16, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include rdft/scalar/r2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 58 FP additions, 18 FP multiplications, | ||
|  |  * (or, 54 additions, 14 multiplications, 4 fused multiply/add), | ||
|  |  * 31 stack variables, 4 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/r2cb.h"
 | ||
|  | 
 | ||
|  | static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | ||
|  | { | ||
|  |      DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); | ||
|  |      DK(KP765366864, +0.765366864730179543456919968060797733522689125); | ||
|  |      DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); | ||
|  |      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT i; | ||
|  | 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { | ||
|  | 	       E T9, TS, Tl, TG, T6, TR, Ti, TD, Td, Tq, Tg, Tt, Tn, Tu, TV; | ||
|  | 	       E TU, TN, TK; | ||
|  | 	       { | ||
|  | 		    E T7, T8, TE, Tj, Tk, TF; | ||
|  | 		    T7 = Cr[WS(csr, 2)]; | ||
|  | 		    T8 = Cr[WS(csr, 6)]; | ||
|  | 		    TE = T7 - T8; | ||
|  | 		    Tj = Ci[WS(csi, 2)]; | ||
|  | 		    Tk = Ci[WS(csi, 6)]; | ||
|  | 		    TF = Tj + Tk; | ||
|  | 		    T9 = KP2_000000000 * (T7 + T8); | ||
|  | 		    TS = KP1_414213562 * (TE + TF); | ||
|  | 		    Tl = KP2_000000000 * (Tj - Tk); | ||
|  | 		    TG = KP1_414213562 * (TE - TF); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T5, TC, T3, TA; | ||
|  | 		    { | ||
|  | 			 E T4, TB, T1, T2; | ||
|  | 			 T4 = Cr[WS(csr, 4)]; | ||
|  | 			 T5 = KP2_000000000 * T4; | ||
|  | 			 TB = Ci[WS(csi, 4)]; | ||
|  | 			 TC = KP2_000000000 * TB; | ||
|  | 			 T1 = Cr[0]; | ||
|  | 			 T2 = Cr[WS(csr, 8)]; | ||
|  | 			 T3 = T1 + T2; | ||
|  | 			 TA = T1 - T2; | ||
|  | 		    } | ||
|  | 		    T6 = T3 + T5; | ||
|  | 		    TR = TA + TC; | ||
|  | 		    Ti = T3 - T5; | ||
|  | 		    TD = TA - TC; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TI, TM, TL, TJ; | ||
|  | 		    { | ||
|  | 			 E Tb, Tc, To, Tp; | ||
|  | 			 Tb = Cr[WS(csr, 1)]; | ||
|  | 			 Tc = Cr[WS(csr, 7)]; | ||
|  | 			 Td = Tb + Tc; | ||
|  | 			 TI = Tb - Tc; | ||
|  | 			 To = Ci[WS(csi, 1)]; | ||
|  | 			 Tp = Ci[WS(csi, 7)]; | ||
|  | 			 Tq = To - Tp; | ||
|  | 			 TM = To + Tp; | ||
|  | 		    } | ||
|  | 		    { | ||
|  | 			 E Te, Tf, Tr, Ts; | ||
|  | 			 Te = Cr[WS(csr, 5)]; | ||
|  | 			 Tf = Cr[WS(csr, 3)]; | ||
|  | 			 Tg = Te + Tf; | ||
|  | 			 TL = Te - Tf; | ||
|  | 			 Tr = Ci[WS(csi, 5)]; | ||
|  | 			 Ts = Ci[WS(csi, 3)]; | ||
|  | 			 Tt = Tr - Ts; | ||
|  | 			 TJ = Tr + Ts; | ||
|  | 		    } | ||
|  | 		    Tn = Td - Tg; | ||
|  | 		    Tu = Tq - Tt; | ||
|  | 		    TV = TM - TL; | ||
|  | 		    TU = TI + TJ; | ||
|  | 		    TN = TL + TM; | ||
|  | 		    TK = TI - TJ; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Ta, Th, TT, TW; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Th = KP2_000000000 * (Td + Tg); | ||
|  | 		    R0[WS(rs, 4)] = Ta - Th; | ||
|  | 		    R0[0] = Ta + Th; | ||
|  | 		    TT = TR - TS; | ||
|  | 		    TW = FNMS(KP1_847759065, TV, KP765366864 * TU); | ||
|  | 		    R1[WS(rs, 5)] = TT - TW; | ||
|  | 		    R1[WS(rs, 1)] = TT + TW; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TX, TY, Tm, Tv; | ||
|  | 		    TX = TR + TS; | ||
|  | 		    TY = FMA(KP1_847759065, TU, KP765366864 * TV); | ||
|  | 		    R1[WS(rs, 3)] = TX - TY; | ||
|  | 		    R1[WS(rs, 7)] = TX + TY; | ||
|  | 		    Tm = Ti - Tl; | ||
|  | 		    Tv = KP1_414213562 * (Tn - Tu); | ||
|  | 		    R0[WS(rs, 5)] = Tm - Tv; | ||
|  | 		    R0[WS(rs, 1)] = Tm + Tv; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Tx, TH, TO; | ||
|  | 		    Tw = Ti + Tl; | ||
|  | 		    Tx = KP1_414213562 * (Tn + Tu); | ||
|  | 		    R0[WS(rs, 3)] = Tw - Tx; | ||
|  | 		    R0[WS(rs, 7)] = Tw + Tx; | ||
|  | 		    TH = TD + TG; | ||
|  | 		    TO = FNMS(KP765366864, TN, KP1_847759065 * TK); | ||
|  | 		    R1[WS(rs, 4)] = TH - TO; | ||
|  | 		    R1[0] = TH + TO; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TP, TQ, Ty, Tz; | ||
|  | 		    TP = TD - TG; | ||
|  | 		    TQ = FMA(KP765366864, TK, KP1_847759065 * TN); | ||
|  | 		    R1[WS(rs, 2)] = TP - TQ; | ||
|  | 		    R1[WS(rs, 6)] = TP + TQ; | ||
|  | 		    Ty = T6 - T9; | ||
|  | 		    Tz = KP2_000000000 * (Tt + Tq); | ||
|  | 		    R0[WS(rs, 2)] = Ty - Tz; | ||
|  | 		    R0[WS(rs, 6)] = Ty + Tz; | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const kr2c_desc desc = { 16, "r2cb_16", { 54, 14, 4, 0 }, &GENUS }; | ||
|  | 
 | ||
|  | void X(codelet_r2cb_16) (planner *p) { X(kr2c_register) (p, r2cb_16, &desc); | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |