148 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			148 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
|   | (*
 | ||
|  |  * Copyright (c) 1997-1999 Massachusetts Institute of Technology | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  *) | ||
|  | 
 | ||
|  | (* abstraction layer for complex operations *) | ||
|  | open Littlesimp | ||
|  | open Expr | ||
|  | 
 | ||
|  | (* type of complex expressions *) | ||
|  | type expr = CE of Expr.expr * Expr.expr | ||
|  | 
 | ||
|  | let two = CE (makeNum Number.two, makeNum Number.zero) | ||
|  | let one = CE (makeNum Number.one, makeNum Number.zero) | ||
|  | let i = CE (makeNum Number.zero, makeNum Number.one) | ||
|  | let zero = CE (makeNum Number.zero, makeNum Number.zero) | ||
|  | let make (r, i) = CE (r, i) | ||
|  | 
 | ||
|  | let uminus (CE (a, b)) =  CE (makeUminus a, makeUminus b) | ||
|  | 
 | ||
|  | let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)), | ||
|  | 			makeNum Number.zero) | ||
|  | 
 | ||
|  | let inverse_int_sqrt n =  | ||
|  |   CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))), | ||
|  |       makeNum Number.zero) | ||
|  | let int_sqrt n =  | ||
|  |   CE (makeNum (Number.sqrt (Number.of_int n)), | ||
|  |       makeNum Number.zero) | ||
|  | 
 | ||
|  | let nan x = CE (NaN x, makeNum Number.zero) | ||
|  | 
 | ||
|  | let half = inverse_int 2 | ||
|  | 
 | ||
|  | let times3x3 (CE (a, b)) (CE (c, d)) =  | ||
|  |   CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]); | ||
|  | 	        makeTimes (b, makePlus [c; makeUminus (d)])], | ||
|  |       makePlus [makeTimes (a, makePlus [c; d]); | ||
|  | 	        makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))]) | ||
|  | 
 | ||
|  | let times (CE (a, b)) (CE (c, d)) =  | ||
|  |   if not !Magic.threemult then | ||
|  |     CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))], | ||
|  |         makePlus [makeTimes (a, d); makeTimes (b, c)]) | ||
|  |   else if is_constant c && is_constant d then | ||
|  |     times3x3 (CE (a, b)) (CE (c, d)) | ||
|  |   else (* hope a and b are constant expressions *) | ||
|  |     times3x3 (CE (c, d)) (CE (a, b)) | ||
|  | 
 | ||
|  | let ctimes (CE (a, _)) (CE (c, _)) =  | ||
|  |   CE (CTimes (a, c), makeNum Number.zero) | ||
|  | 
 | ||
|  | let ctimesj (CE (a, _)) (CE (c, _)) =  | ||
|  |   CE (CTimesJ (a, c), makeNum Number.zero) | ||
|  |        | ||
|  | (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *) | ||
|  | let exp n i = | ||
|  |   let (c, s) = Number.cexp n i | ||
|  |   in CE (makeNum c, makeNum s) | ||
|  | 
 | ||
|  | (* various trig functions evaluated at (2*pi*i/n * m) *) | ||
|  | let sec n m = | ||
|  |   let (c, s) = Number.cexp n m | ||
|  |   in CE (makeNum (Number.div Number.one c), makeNum Number.zero) | ||
|  | let csc n m = | ||
|  |   let (c, s) = Number.cexp n m | ||
|  |   in CE (makeNum (Number.div Number.one s), makeNum Number.zero) | ||
|  | let tan n m = | ||
|  |   let (c, s) = Number.cexp n m | ||
|  |   in CE (makeNum (Number.div s c), makeNum Number.zero) | ||
|  | let cot n m = | ||
|  |   let (c, s) = Number.cexp n m | ||
|  |   in CE (makeNum (Number.div c s), makeNum Number.zero) | ||
|  |      | ||
|  | (* complex sum *) | ||
|  | let plus a = | ||
|  |   let rec unzip_complex = function | ||
|  |       [] -> ([], []) | ||
|  |     | ((CE (a, b)) :: s) -> | ||
|  |         let (r,i) = unzip_complex s | ||
|  | 	in | ||
|  | 	(a::r), (b::i) in | ||
|  |   let (c, d) = unzip_complex a in | ||
|  |   CE (makePlus c, makePlus d) | ||
|  | 
 | ||
|  | (* extract real/imaginary *) | ||
|  | let real (CE (a, b)) = CE (a, makeNum Number.zero) | ||
|  | let imag (CE (a, b)) = CE (b, makeNum Number.zero) | ||
|  | let iimag (CE (a, b)) = CE (makeNum Number.zero, b) | ||
|  | let conj (CE (a, b)) = CE (a, makeUminus b) | ||
|  | 
 | ||
|  |      | ||
|  | (* abstraction of sum_{i=0}^{n-1} *) | ||
|  | let sigma a b f = plus (List.map f (Util.interval a b)) | ||
|  | 
 | ||
|  | (* store and assignment operations *) | ||
|  | let store_real v (CE (a, b)) = Expr.Store (v, a) | ||
|  | let store_imag v (CE (a, b)) = Expr.Store (v, b) | ||
|  | let store (vr, vi) x = (store_real vr x, store_imag vi x) | ||
|  | 
 | ||
|  | let assign_real v (CE (a, b)) = Expr.Assign (v, a) | ||
|  | let assign_imag v (CE (a, b)) = Expr.Assign (v, b) | ||
|  | let assign (vr, vi) x = (assign_real vr x, assign_imag vi x) | ||
|  | 
 | ||
|  | 
 | ||
|  | (************************
 | ||
|  |    shortcuts  | ||
|  |  ************************) | ||
|  | let (@*) = times | ||
|  | let (@+) a b = plus [a; b] | ||
|  | let (@-) a b = plus [a; uminus b] | ||
|  | 
 | ||
|  | (* type of complex signals *) | ||
|  | type signal = int -> expr | ||
|  | 
 | ||
|  | (* make a finite signal infinite *) | ||
|  | let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero | ||
|  | 
 | ||
|  | let hermitian n a = | ||
|  |   Util.array n (fun i -> | ||
|  |     if (i = 0) then real (a 0) | ||
|  |     else if (i < n - i)  then (a i) | ||
|  |     else if (i > n - i)  then conj (a (n - i)) | ||
|  |     else real (a i)) | ||
|  | 
 | ||
|  | let antihermitian n a = | ||
|  |   Util.array n (fun i -> | ||
|  |     if (i = 0) then iimag (a 0) | ||
|  |     else if (i < n - i)  then (a i) | ||
|  |     else if (i > n - i)  then uminus (conj (a (n - i))) | ||
|  |     else iimag (a i)) |