387 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			387 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "rdft/rdft.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Compute DHTs of prime sizes using Rader's trick: turn them
							 | 
						||
| 
								 | 
							
								 * into convolutions of size n - 1, which we then perform via a pair
							 | 
						||
| 
								 | 
							
								 * of FFTs.   (We can then do prime real FFTs via rdft-dht.c.)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Optionally (determined by the "pad" field of the solver), we can
							 | 
						||
| 
								 | 
							
								 * perform the (cyclic) convolution by zero-padding to a size
							 | 
						||
| 
								 | 
							
								 * >= 2*(n-1) - 1.  This is advantageous if n-1 has large prime factors.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     solver super;
							 | 
						||
| 
								 | 
							
								     int pad;
							 | 
						||
| 
								 | 
							
								} S;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								typedef struct {
							 | 
						||
| 
								 | 
							
								     plan_rdft super;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     plan *cld1, *cld2;
							 | 
						||
| 
								 | 
							
								     R *omega;
							 | 
						||
| 
								 | 
							
								     INT n, npad, g, ginv;
							 | 
						||
| 
								 | 
							
								     INT is, os;
							 | 
						||
| 
								 | 
							
								     plan *cld_omega;
							 | 
						||
| 
								 | 
							
								} P;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static rader_tl *omegas = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/***************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
							 | 
						||
| 
								 | 
							
								   purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
							 | 
						||
| 
								 | 
							
								   This requires a few more operations, but allows us to share the same
							 | 
						||
| 
								 | 
							
								   plan/codelets for both Rader children. */
							 | 
						||
| 
								 | 
							
								#define R2HC_ONLY_CONV 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void apply(const plan *ego_, R *I, R *O)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								     INT n = ego->n; /* prime */
							 | 
						||
| 
								 | 
							
								     INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
							 | 
						||
| 
								 | 
							
								     INT is = ego->is, os;
							 | 
						||
| 
								 | 
							
								     INT k, gpower, g;
							 | 
						||
| 
								 | 
							
								     R *buf, *omega;
							 | 
						||
| 
								 | 
							
								     R r0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* First, permute the input, storing in buf: */
							 | 
						||
| 
								 | 
							
								     g = ego->g; 
							 | 
						||
| 
								 | 
							
								     for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
							 | 
						||
| 
								 | 
							
									  buf[k] = I[gpower * is];
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     /* gpower == g^(n-1) mod n == 1 */;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     A(n - 1 <= npad);
							 | 
						||
| 
								 | 
							
								     for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
							 | 
						||
| 
								 | 
							
									  buf[k] = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     os = ego->os;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* compute RDFT of buf, storing in buf (i.e., in-place): */
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									    plan_rdft *cld = (plan_rdft *) ego->cld1;
							 | 
						||
| 
								 | 
							
									    cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* set output DC component: */
							 | 
						||
| 
								 | 
							
								     O[0] = (r0 = I[0]) + buf[0];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* now, multiply by omega: */
							 | 
						||
| 
								 | 
							
								     omega = ego->omega;
							 | 
						||
| 
								 | 
							
								     buf[0] *= omega[0];
							 | 
						||
| 
								 | 
							
								     for (k = 1; k < npad/2; ++k) {
							 | 
						||
| 
								 | 
							
									  E rB, iB, rW, iW, a, b;
							 | 
						||
| 
								 | 
							
									  rW = omega[k];
							 | 
						||
| 
								 | 
							
									  iW = omega[npad - k];
							 | 
						||
| 
								 | 
							
									  rB = buf[k];
							 | 
						||
| 
								 | 
							
									  iB = buf[npad - k];
							 | 
						||
| 
								 | 
							
									  a = rW * rB - iW * iB;
							 | 
						||
| 
								 | 
							
									  b = rW * iB + iW * rB;
							 | 
						||
| 
								 | 
							
								#if R2HC_ONLY_CONV
							 | 
						||
| 
								 | 
							
									  buf[k] = a + b;
							 | 
						||
| 
								 | 
							
									  buf[npad - k] = a - b;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									  buf[k] = a;
							 | 
						||
| 
								 | 
							
									  buf[npad - k] = b;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     /* Nyquist component: */
							 | 
						||
| 
								 | 
							
								     A(k + k == npad); /* since npad is even */
							 | 
						||
| 
								 | 
							
								     buf[k] *= omega[k];
							 | 
						||
| 
								 | 
							
								     
							 | 
						||
| 
								 | 
							
								     /* this will add input[0] to all of the outputs after the ifft */
							 | 
						||
| 
								 | 
							
								     buf[0] += r0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* inverse FFT: */
							 | 
						||
| 
								 | 
							
								     {
							 | 
						||
| 
								 | 
							
									    plan_rdft *cld = (plan_rdft *) ego->cld2;
							 | 
						||
| 
								 | 
							
									    cld->apply((plan *) cld, buf, buf);
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* do inverse permutation to unshuffle the output: */
							 | 
						||
| 
								 | 
							
								     A(gpower == 1);
							 | 
						||
| 
								 | 
							
								#if R2HC_ONLY_CONV
							 | 
						||
| 
								 | 
							
								     O[os] = buf[0];
							 | 
						||
| 
								 | 
							
								     gpower = g = ego->ginv;
							 | 
						||
| 
								 | 
							
								     A(npad == n - 1 || npad/2 >= n - 1);
							 | 
						||
| 
								 | 
							
								     if (npad == n - 1) {
							 | 
						||
| 
								 | 
							
									  for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
							 | 
						||
| 
								 | 
							
									       O[gpower * os] = buf[k] + buf[npad - k];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
									  O[gpower * os] = buf[k];
							 | 
						||
| 
								 | 
							
									  ++k, gpower = MULMOD(gpower, g, n);
							 | 
						||
| 
								 | 
							
									  for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
							 | 
						||
| 
								 | 
							
									       O[gpower * os] = buf[npad - k] - buf[k];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     else {
							 | 
						||
| 
								 | 
							
									  for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
							 | 
						||
| 
								 | 
							
									       O[gpower * os] = buf[k] + buf[npad - k];
							 | 
						||
| 
								 | 
							
									  }
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								     g = ego->ginv;
							 | 
						||
| 
								 | 
							
								     for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
							 | 
						||
| 
								 | 
							
									  O[gpower * os] = buf[k];
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								     A(gpower == 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static R *mkomega(enum wakefulness wakefulness,
							 | 
						||
| 
								 | 
							
										  plan *p_, INT n, INT npad, INT ginv)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     plan_rdft *p = (plan_rdft *) p_;
							 | 
						||
| 
								 | 
							
								     R *omega;
							 | 
						||
| 
								 | 
							
								     INT i, gpower;
							 | 
						||
| 
								 | 
							
								     trigreal scale;
							 | 
						||
| 
								 | 
							
								     triggen *t;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas))) 
							 | 
						||
| 
								 | 
							
									  return omega;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     scale = npad; /* normalization for convolution */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     t = X(mktriggen)(wakefulness, n);
							 | 
						||
| 
								 | 
							
								     for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
							 | 
						||
| 
								 | 
							
									  trigreal w[2];
							 | 
						||
| 
								 | 
							
									  t->cexpl(t, gpower, w);
							 | 
						||
| 
								 | 
							
									  omega[i] = (w[0] + w[1]) / scale;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								     X(triggen_destroy)(t);
							 | 
						||
| 
								 | 
							
								     A(gpower == 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     A(npad == n - 1 || npad >= 2*(n - 1) - 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     for (; i < npad; ++i)
							 | 
						||
| 
								 | 
							
									  omega[i] = K(0.0);
							 | 
						||
| 
								 | 
							
								     if (npad > n - 1)
							 | 
						||
| 
								 | 
							
									  for (i = 1; i < n-1; ++i)
							 | 
						||
| 
								 | 
							
									       omega[npad - i] = omega[n - 1 - i];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p->apply(p_, omega, omega);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
							 | 
						||
| 
								 | 
							
								     return omega;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void free_omega(R *omega)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     X(rader_tl_delete)(omega, &omegas);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/***************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void awake(plan *ego_, enum wakefulness wakefulness)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld1, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld2, wakefulness);
							 | 
						||
| 
								 | 
							
								     X(plan_awake)(ego->cld_omega, wakefulness);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     switch (wakefulness) {
							 | 
						||
| 
								 | 
							
									 case SLEEPY:
							 | 
						||
| 
								 | 
							
									      free_omega(ego->omega);
							 | 
						||
| 
								 | 
							
									      ego->omega = 0;
							 | 
						||
| 
								 | 
							
									      break;
							 | 
						||
| 
								 | 
							
									 default:
							 | 
						||
| 
								 | 
							
									      ego->g = X(find_generator)(ego->n);
							 | 
						||
| 
								 | 
							
									      ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
							 | 
						||
| 
								 | 
							
									      A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									      A(!ego->omega);
							 | 
						||
| 
								 | 
							
									      ego->omega = mkomega(wakefulness, 
							 | 
						||
| 
								 | 
							
												   ego->cld_omega,ego->n,ego->npad,ego->ginv);
							 | 
						||
| 
								 | 
							
									      break;
							 | 
						||
| 
								 | 
							
								     }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void destroy(plan *ego_)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     P *ego = (P *) ego_;
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld_omega);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld2);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(ego->cld1);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void print(const plan *ego_, printer *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const P *ego = (const P *) ego_;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
							 | 
						||
| 
								 | 
							
								              ego->n, ego->npad, ego->is, ego->os, ego->cld1);
							 | 
						||
| 
								 | 
							
								     if (ego->cld2 != ego->cld1)
							 | 
						||
| 
								 | 
							
								          p->print(p, "%(%p%)", ego->cld2);
							 | 
						||
| 
								 | 
							
								     if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
							 | 
						||
| 
								 | 
							
								          p->print(p, "%(%p%)", ego->cld_omega);
							 | 
						||
| 
								 | 
							
								     p->putchr(p, ')');
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int applicable(const solver *ego, const problem *p_, const planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								     UNUSED(ego);
							 | 
						||
| 
								 | 
							
								     return (1
							 | 
						||
| 
								 | 
							
									     && p->sz->rnk == 1
							 | 
						||
| 
								 | 
							
									     && p->vecsz->rnk == 0
							 | 
						||
| 
								 | 
							
									     && p->kind[0] == DHT
							 | 
						||
| 
								 | 
							
									     && X(is_prime)(p->sz->dims[0].n)
							 | 
						||
| 
								 | 
							
									     && p->sz->dims[0].n > 2
							 | 
						||
| 
								 | 
							
									     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
							 | 
						||
| 
								 | 
							
									     /* proclaim the solver SLOW if p-1 is not easily
							 | 
						||
| 
								 | 
							
										factorizable.  Unlike in the complex case where
							 | 
						||
| 
								 | 
							
										Bluestein can solve the problem, in the DHT case we
							 | 
						||
| 
								 | 
							
										may have no other choice */
							 | 
						||
| 
								 | 
							
									     && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
							 | 
						||
| 
								 | 
							
									  );
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static INT choose_transform_size(INT minsz)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const INT primes[] = { 2, 3, 5, 0 };
							 | 
						||
| 
								 | 
							
								     while (!X(factors_into)(minsz, primes) || minsz % 2)
							 | 
						||
| 
								 | 
							
									  ++minsz;
							 | 
						||
| 
								 | 
							
								     return minsz;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     const S *ego = (const S *) ego_;
							 | 
						||
| 
								 | 
							
								     const problem_rdft *p = (const problem_rdft *) p_;
							 | 
						||
| 
								 | 
							
								     P *pln;
							 | 
						||
| 
								 | 
							
								     INT n, npad;
							 | 
						||
| 
								 | 
							
								     INT is, os;
							 | 
						||
| 
								 | 
							
								     plan *cld1 = (plan *) 0;
							 | 
						||
| 
								 | 
							
								     plan *cld2 = (plan *) 0;
							 | 
						||
| 
								 | 
							
								     plan *cld_omega = (plan *) 0;
							 | 
						||
| 
								 | 
							
								     R *buf = (R *) 0;
							 | 
						||
| 
								 | 
							
								     problem *cldp;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     static const plan_adt padt = {
							 | 
						||
| 
								 | 
							
									  X(rdft_solve), awake, print, destroy
							 | 
						||
| 
								 | 
							
								     };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (!applicable(ego_, p_, plnr))
							 | 
						||
| 
								 | 
							
									  return (plan *) 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     n = p->sz->dims[0].n;
							 | 
						||
| 
								 | 
							
								     is = p->sz->dims[0].is;
							 | 
						||
| 
								 | 
							
								     os = p->sz->dims[0].os;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     if (ego->pad)
							 | 
						||
| 
								 | 
							
									  npad = choose_transform_size(2 * (n - 1) - 1);
							 | 
						||
| 
								 | 
							
								     else
							 | 
						||
| 
								 | 
							
									  npad = n - 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* initial allocation for the purpose of planning */
							 | 
						||
| 
								 | 
							
								     buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     cld1 = X(mkplan_f_d)(plnr, 
							 | 
						||
| 
								 | 
							
											  X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
							 | 
						||
| 
								 | 
							
														X(mktensor_1d)(1, 0, 0),
							 | 
						||
| 
								 | 
							
														buf, buf,
							 | 
						||
| 
								 | 
							
														R2HC),
							 | 
						||
| 
								 | 
							
											  NO_SLOW, 0, 0);
							 | 
						||
| 
								 | 
							
								     if (!cld1) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     cldp =
							 | 
						||
| 
								 | 
							
								          X(mkproblem_rdft_1_d)(
							 | 
						||
| 
								 | 
							
								               X(mktensor_1d)(npad, 1, 1),
							 | 
						||
| 
								 | 
							
								               X(mktensor_1d)(1, 0, 0),
							 | 
						||
| 
								 | 
							
									       buf, buf, 
							 | 
						||
| 
								 | 
							
								#if R2HC_ONLY_CONV
							 | 
						||
| 
								 | 
							
									       R2HC
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
									       HC2R
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
									       );
							 | 
						||
| 
								 | 
							
								     if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
							 | 
						||
| 
								 | 
							
									  goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* plan for omega */
							 | 
						||
| 
								 | 
							
								     cld_omega = X(mkplan_f_d)(plnr, 
							 | 
						||
| 
								 | 
							
											       X(mkproblem_rdft_1_d)(
							 | 
						||
| 
								 | 
							
												    X(mktensor_1d)(npad, 1, 1),
							 | 
						||
| 
								 | 
							
												    X(mktensor_1d)(1, 0, 0),
							 | 
						||
| 
								 | 
							
												    buf, buf, R2HC),
							 | 
						||
| 
								 | 
							
											       NO_SLOW, ESTIMATE, 0);
							 | 
						||
| 
								 | 
							
								     if (!cld_omega) goto nada;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     /* deallocate buffers; let awake() or apply() allocate them for real */
							 | 
						||
| 
								 | 
							
								     X(ifree)(buf);
							 | 
						||
| 
								 | 
							
								     buf = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     pln = MKPLAN_RDFT(P, &padt, apply);
							 | 
						||
| 
								 | 
							
								     pln->cld1 = cld1;
							 | 
						||
| 
								 | 
							
								     pln->cld2 = cld2;
							 | 
						||
| 
								 | 
							
								     pln->cld_omega = cld_omega;
							 | 
						||
| 
								 | 
							
								     pln->omega = 0;
							 | 
						||
| 
								 | 
							
								     pln->n = n;
							 | 
						||
| 
								 | 
							
								     pln->npad = npad;
							 | 
						||
| 
								 | 
							
								     pln->is = is;
							 | 
						||
| 
								 | 
							
								     pln->os = os;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
							 | 
						||
| 
								 | 
							
								     pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
							 | 
						||
| 
								 | 
							
								     pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
							 | 
						||
| 
								 | 
							
								     pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
							 | 
						||
| 
								 | 
							
								#if R2HC_ONLY_CONV
							 | 
						||
| 
								 | 
							
								     pln->super.super.ops.other += n-2 - ego->pad;
							 | 
						||
| 
								 | 
							
								     pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								     return &(pln->super.super);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 nada:
							 | 
						||
| 
								 | 
							
								     X(ifree0)(buf);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld_omega);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld2);
							 | 
						||
| 
								 | 
							
								     X(plan_destroy_internal)(cld1);
							 | 
						||
| 
								 | 
							
								     return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* constructors */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static solver *mksolver(int pad)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
							 | 
						||
| 
								 | 
							
								     S *slv = MKSOLVER(S, &sadt);
							 | 
						||
| 
								 | 
							
								     slv->pad = pad;
							 | 
						||
| 
								 | 
							
								     return &(slv->super);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void X(dht_rader_register)(planner *p)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								     REGISTER_SOLVER(p, mksolver(0));
							 | 
						||
| 
								 | 
							
								     REGISTER_SOLVER(p, mksolver(1));
							 | 
						||
| 
								 | 
							
								}
							 |