263 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			263 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:46:00 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 44 FP additions, 32 FP multiplications, | ||
|  |  * (or, 36 additions, 24 multiplications, 8 fused multiply/add), | ||
|  |  * 22 stack variables, 0 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/q1f.h"
 | ||
|  | 
 | ||
|  | static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { | ||
|  | 	       V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; | ||
|  | 	       V Tl; | ||
|  | 	       { | ||
|  | 		    V T1, T2, Ty, Tz; | ||
|  | 		    T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 		    T3 = VSUB(T1, T2); | ||
|  | 		    T9 = VADD(T1, T2); | ||
|  | 		    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | ||
|  | 		    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | ||
|  | 		    TA = VSUB(Ty, Tz); | ||
|  | 		    TG = VADD(Ty, Tz); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TB, TC, T4, T5; | ||
|  | 		    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 		    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 		    TD = VSUB(TB, TC); | ||
|  | 		    TH = VADD(TB, TC); | ||
|  | 		    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T6 = VSUB(T4, T5); | ||
|  | 		    Ta = VADD(T4, T5); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tc, Td, Tn, To; | ||
|  | 		    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | ||
|  | 		    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | ||
|  | 		    Te = VSUB(Tc, Td); | ||
|  | 		    Tk = VADD(Tc, Td); | ||
|  | 		    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | ||
|  | 		    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | ||
|  | 		    Tp = VSUB(Tn, To); | ||
|  | 		    Tv = VADD(Tn, To); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tq, Tr, Tf, Tg; | ||
|  | 		    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 		    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 		    Ts = VSUB(Tq, Tr); | ||
|  | 		    Tw = VADD(Tq, Tr); | ||
|  | 		    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 		    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 		    Th = VSUB(Tf, Tg); | ||
|  | 		    Tl = VADD(Tf, Tg); | ||
|  | 	       } | ||
|  | 	       ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); | ||
|  | 	       ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); | ||
|  | 	       ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); | ||
|  | 	       ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 	       { | ||
|  | 		    V T7, Ti, Tt, TE; | ||
|  | 		    T7 = BYTWJ(&(W[0]), VFNMSI(T6, T3)); | ||
|  | 		    ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)])); | ||
|  | 		    Ti = BYTWJ(&(W[0]), VFNMSI(Th, Te)); | ||
|  | 		    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 		    Tt = BYTWJ(&(W[0]), VFNMSI(Ts, Tp)); | ||
|  | 		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)])); | ||
|  | 		    TE = BYTWJ(&(W[0]), VFNMSI(TD, TA)); | ||
|  | 		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T8, Tj, Tu, TF; | ||
|  | 		    T8 = BYTWJ(&(W[TWVL * 4]), VFMAI(T6, T3)); | ||
|  | 		    ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)])); | ||
|  | 		    Tj = BYTWJ(&(W[TWVL * 4]), VFMAI(Th, Te)); | ||
|  | 		    ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 		    Tu = BYTWJ(&(W[TWVL * 4]), VFMAI(Ts, Tp)); | ||
|  | 		    ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)])); | ||
|  | 		    TF = BYTWJ(&(W[TWVL * 4]), VFMAI(TD, TA)); | ||
|  | 		    ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tb, Tm, Tx, TI; | ||
|  | 		    Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta)); | ||
|  | 		    ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); | ||
|  | 		    Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl)); | ||
|  | 		    ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 		    Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw)); | ||
|  | 		    ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); | ||
|  | 		    TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH)); | ||
|  | 		    ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, { 36, 24, 8, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_q1fv_4) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1fv_4, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1fv_4 -include dft/simd/q1f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 44 FP additions, 24 FP multiplications, | ||
|  |  * (or, 44 additions, 24 multiplications, 0 fused multiply/add), | ||
|  |  * 22 stack variables, 0 constants, and 32 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/q1f.h"
 | ||
|  | 
 | ||
|  | static void q1fv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { | ||
|  | 	       V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; | ||
|  | 	       V Tl; | ||
|  | 	       { | ||
|  | 		    V T1, T2, Ty, Tz; | ||
|  | 		    T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 		    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 		    T3 = VSUB(T1, T2); | ||
|  | 		    T9 = VADD(T1, T2); | ||
|  | 		    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | ||
|  | 		    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | ||
|  | 		    TA = VSUB(Ty, Tz); | ||
|  | 		    TG = VADD(Ty, Tz); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V TB, TC, T4, T5; | ||
|  | 		    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 		    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 		    TD = VBYI(VSUB(TB, TC)); | ||
|  | 		    TH = VADD(TB, TC); | ||
|  | 		    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 		    T6 = VBYI(VSUB(T4, T5)); | ||
|  | 		    Ta = VADD(T4, T5); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tc, Td, Tn, To; | ||
|  | 		    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | ||
|  | 		    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | ||
|  | 		    Te = VSUB(Tc, Td); | ||
|  | 		    Tk = VADD(Tc, Td); | ||
|  | 		    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | ||
|  | 		    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | ||
|  | 		    Tp = VSUB(Tn, To); | ||
|  | 		    Tv = VADD(Tn, To); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tq, Tr, Tf, Tg; | ||
|  | 		    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 		    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 		    Ts = VBYI(VSUB(Tq, Tr)); | ||
|  | 		    Tw = VADD(Tq, Tr); | ||
|  | 		    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 		    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 		    Th = VBYI(VSUB(Tf, Tg)); | ||
|  | 		    Tl = VADD(Tf, Tg); | ||
|  | 	       } | ||
|  | 	       ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); | ||
|  | 	       ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); | ||
|  | 	       ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); | ||
|  | 	       ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | ||
|  | 	       { | ||
|  | 		    V T7, Ti, Tt, TE; | ||
|  | 		    T7 = BYTWJ(&(W[0]), VSUB(T3, T6)); | ||
|  | 		    ST(&(x[WS(vs, 1)]), T7, ms, &(x[WS(vs, 1)])); | ||
|  | 		    Ti = BYTWJ(&(W[0]), VSUB(Te, Th)); | ||
|  | 		    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 		    Tt = BYTWJ(&(W[0]), VSUB(Tp, Ts)); | ||
|  | 		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 1)])); | ||
|  | 		    TE = BYTWJ(&(W[0]), VSUB(TA, TD)); | ||
|  | 		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V T8, Tj, Tu, TF; | ||
|  | 		    T8 = BYTWJ(&(W[TWVL * 4]), VADD(T3, T6)); | ||
|  | 		    ST(&(x[WS(vs, 3)]), T8, ms, &(x[WS(vs, 3)])); | ||
|  | 		    Tj = BYTWJ(&(W[TWVL * 4]), VADD(Te, Th)); | ||
|  | 		    ST(&(x[WS(vs, 3) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 		    Tu = BYTWJ(&(W[TWVL * 4]), VADD(Tp, Ts)); | ||
|  | 		    ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 3)])); | ||
|  | 		    TF = BYTWJ(&(W[TWVL * 4]), VADD(TA, TD)); | ||
|  | 		    ST(&(x[WS(vs, 3) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    V Tb, Tm, Tx, TI; | ||
|  | 		    Tb = BYTWJ(&(W[TWVL * 2]), VSUB(T9, Ta)); | ||
|  | 		    ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); | ||
|  | 		    Tm = BYTWJ(&(W[TWVL * 2]), VSUB(Tk, Tl)); | ||
|  | 		    ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 		    Tx = BYTWJ(&(W[TWVL * 2]), VSUB(Tv, Tw)); | ||
|  | 		    ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); | ||
|  | 		    TI = BYTWJ(&(W[TWVL * 2]), VSUB(TG, TH)); | ||
|  | 		    ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 4, XSIMD_STRING("q1fv_4"), twinstr, &GENUS, { 44, 24, 0, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_q1fv_4) (planner *p) { | ||
|  |      X(kdft_difsq_register) (p, q1fv_4, &desc); | ||
|  | } | ||
|  | #endif
 |