237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
|   | (*
 | ||
|  |  * Copyright (c) 1997-1999 Massachusetts Institute of Technology | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  *) | ||
|  | 
 | ||
|  | (* This file contains the instruction scheduler, which finds an
 | ||
|  |    efficient ordering for a given list of instructions. | ||
|  | 
 | ||
|  |    The scheduler analyzes the DAG (directed acyclic graph) formed by | ||
|  |    the instruction dependencies, and recursively partitions it.  The | ||
|  |    resulting schedule data structure expresses a "good" ordering | ||
|  |    and structure for the computation. | ||
|  | 
 | ||
|  |    The scheduler makes use of utilties in Dag and other packages to | ||
|  |    manipulate the Dag and the instruction list. *) | ||
|  | 
 | ||
|  | open Dag | ||
|  | (*************************************************
 | ||
|  |  *               Dag scheduler | ||
|  |  *************************************************) | ||
|  | let to_assignment node = (Expr.Assign (node.assigned, node.expression)) | ||
|  | let makedag l = Dag.makedag  | ||
|  |     (List.map (function Expr.Assign (v, x) -> (v, x)) l) | ||
|  | 
 | ||
|  | let return x = x | ||
|  | let has_color c n = (n.color = c) | ||
|  | let set_color c n = (n.color <- c) | ||
|  | let has_either_color c1 c2 n = (n.color = c1 || n.color = c2) | ||
|  | 
 | ||
|  | let infinity = 100000  | ||
|  | 
 | ||
|  | let cc dag inputs = | ||
|  |   begin | ||
|  |     Dag.for_all dag (fun node ->  | ||
|  |       node.label <- infinity); | ||
|  |      | ||
|  |     (match inputs with  | ||
|  |       a :: _ -> bfs dag a 0 | ||
|  |     | _ -> failwith "connected"); | ||
|  | 
 | ||
|  |     return | ||
|  |       ((List.map to_assignment (List.filter (fun n -> n.label < infinity) | ||
|  | 				  (Dag.to_list dag))), | ||
|  |        (List.map to_assignment (List.filter (fun n -> n.label == infinity)  | ||
|  | 				  (Dag.to_list dag)))) | ||
|  |   end | ||
|  | 
 | ||
|  | let rec connected_components alist = | ||
|  |   let dag = makedag alist in | ||
|  |   let inputs =  | ||
|  |     List.filter (fun node -> Util.null node.predecessors)  | ||
|  |       (Dag.to_list dag) in | ||
|  |   match cc dag inputs with | ||
|  |     (a, []) -> [a] | ||
|  |   | (a, b) -> a :: connected_components b | ||
|  | 
 | ||
|  | let single_load node = | ||
|  |   match (node.input_variables, node.predecessors) with | ||
|  |     ([x], []) ->  | ||
|  |       Variable.is_constant x || | ||
|  |       (!Magic.locations_are_special && Variable.is_locative x) | ||
|  |   | _ -> false | ||
|  | 
 | ||
|  | let loads_locative node = | ||
|  |   match (node.input_variables, node.predecessors) with | ||
|  |     | ([x], []) -> Variable.is_locative x | ||
|  |     | _ -> false | ||
|  | 
 | ||
|  | let partition alist = | ||
|  |   let dag = makedag alist in | ||
|  |   let dag' = Dag.to_list dag in | ||
|  |   let inputs =  | ||
|  |     List.filter (fun node -> Util.null node.predecessors) dag' | ||
|  |   and outputs =  | ||
|  |     List.filter (fun node -> Util.null node.successors) dag' | ||
|  |   and special_inputs =  List.filter single_load dag' in | ||
|  |   begin | ||
|  |      | ||
|  |     let c = match !Magic.schedule_type with | ||
|  | 	| 1 -> RED; (* all nodes in the input partition *) | ||
|  | 	| -1 -> BLUE; (* all nodes in the output partition *) | ||
|  | 	| _ -> BLACK; (* node color determined by bisection algorithm *) | ||
|  |     in Dag.for_all dag (fun node -> node.color <- c); | ||
|  | 
 | ||
|  |     Util.for_list inputs (set_color RED); | ||
|  | 
 | ||
|  |     (*
 | ||
|  |        The special inputs are those input nodes that load a single | ||
|  |        location or twiddle factor.  Special inputs can end up either | ||
|  |        in the blue or in the red part.  These inputs are special | ||
|  |        because they inherit a color from their neighbors: If a red | ||
|  |        node needs a special input, the special input becomes red, but | ||
|  |        if all successors of a special input are blue, the special | ||
|  |        input becomes blue.  Outputs are always blue, whether they be | ||
|  |        special or not. | ||
|  | 
 | ||
|  |        Because of the processing of special inputs, however, the final | ||
|  |        partition might end up being composed only of blue nodes (which | ||
|  |        is incorrect).  In this case we manually reset all inputs | ||
|  |        (whether special or not) to be red. | ||
|  |     *) | ||
|  | 
 | ||
|  |     Util.for_list special_inputs (set_color YELLOW); | ||
|  | 
 | ||
|  |     Util.for_list outputs (set_color BLUE); | ||
|  | 
 | ||
|  |     let rec loopi donep =  | ||
|  |       match (List.filter | ||
|  | 	       (fun node -> (has_color BLACK node) && | ||
|  | 		 List.for_all (has_either_color RED YELLOW) node.predecessors) | ||
|  | 	       dag') with | ||
|  | 	[] -> if (donep) then () else loopo true | ||
|  |       |	i ->  | ||
|  | 	  begin | ||
|  | 	    Util.for_list i (fun node ->  | ||
|  | 	      begin | ||
|  |       		set_color RED node; | ||
|  | 		Util.for_list node.predecessors (set_color RED); | ||
|  | 	      end); | ||
|  | 	    loopo false;  | ||
|  | 	  end | ||
|  | 
 | ||
|  |     and loopo donep = | ||
|  |       match (List.filter | ||
|  | 	       (fun node -> (has_either_color BLACK YELLOW node) && | ||
|  | 		 List.for_all (has_color BLUE) node.successors) | ||
|  | 	       dag') with | ||
|  | 	[] -> if (donep) then () else loopi true | ||
|  |       |	o -> | ||
|  | 	  begin | ||
|  | 	    Util.for_list o (set_color BLUE); | ||
|  | 	    loopi false;  | ||
|  | 	  end | ||
|  | 
 | ||
|  |     in loopi false; | ||
|  | 
 | ||
|  |     (* fix the partition if it is incorrect *) | ||
|  |     if not (List.exists (has_color RED) dag') then  | ||
|  | 	Util.for_list inputs (set_color RED); | ||
|  |      | ||
|  |     return | ||
|  |       ((List.map to_assignment (List.filter (has_color RED) dag')), | ||
|  |        (List.map to_assignment (List.filter (has_color BLUE) dag'))) | ||
|  |   end | ||
|  | 
 | ||
|  | type schedule =  | ||
|  |     Done | ||
|  |   | Instr of Expr.assignment | ||
|  |   | Seq of (schedule * schedule) | ||
|  |   | Par of schedule list | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | (* produce a sequential schedule determined by the user *) | ||
|  | let rec sequentially = function | ||
|  |     [] -> Done | ||
|  |   | a :: b -> Seq (Instr a, sequentially b) | ||
|  | 
 | ||
|  | let schedule = | ||
|  |   let rec schedule_alist = function | ||
|  |     | [] -> Done | ||
|  |     | [a] -> Instr a | ||
|  |     | alist -> match connected_components alist with | ||
|  | 	| ([a]) -> schedule_connected a | ||
|  | 	| l -> Par (List.map schedule_alist l) | ||
|  | 
 | ||
|  |   and schedule_connected alist =  | ||
|  |     match partition alist with | ||
|  |     | (a, b) -> Seq (schedule_alist a, schedule_alist b) | ||
|  | 
 | ||
|  |   in fun x -> | ||
|  |     let () = Util.info "begin schedule" in | ||
|  |     let res = schedule_alist x in | ||
|  |     let () = Util.info "end schedule" in | ||
|  |     res | ||
|  | 
 | ||
|  | 
 | ||
|  | (* partition a dag into two parts:
 | ||
|  | 
 | ||
|  |    1) the set of loads from locatives and their successors, | ||
|  |    2) all other nodes | ||
|  | 
 | ||
|  |    This step separates the ``body'' of the dag, which computes the | ||
|  |    actual fft, from the ``precomputations'' part, which computes e.g. | ||
|  |    twiddle factors. | ||
|  | *) | ||
|  | let partition_precomputations alist = | ||
|  |   let dag = makedag alist in | ||
|  |   let dag' = Dag.to_list dag in | ||
|  |   let loads =  List.filter loads_locative dag' in | ||
|  |     begin | ||
|  |        | ||
|  |       Dag.for_all dag (set_color BLUE); | ||
|  |       Util.for_list loads (set_color RED); | ||
|  | 
 | ||
|  |       let rec loop () =  | ||
|  | 	match (List.filter | ||
|  | 		 (fun node -> (has_color RED node) && | ||
|  | 		    List.exists (has_color BLUE) node.successors) | ||
|  | 		 dag') with | ||
|  | 	    [] -> () | ||
|  | 	  |	i ->  | ||
|  | 		  begin | ||
|  | 		    Util.for_list i  | ||
|  | 		      (fun node ->  | ||
|  | 			 Util.for_list node.successors (set_color RED)); | ||
|  | 		    loop () | ||
|  | 		  end | ||
|  | 
 | ||
|  |       in loop (); | ||
|  | 
 | ||
|  | 	return | ||
|  | 	  ((List.map to_assignment (List.filter (has_color BLUE) dag')), | ||
|  | 	   (List.map to_assignment (List.filter (has_color RED) dag'))) | ||
|  |     end | ||
|  | 
 | ||
|  | let isolate_precomputations_and_schedule alist = | ||
|  |   let (a, b) = partition_precomputations alist in | ||
|  |     Seq (schedule a, schedule b) | ||
|  |    |