672 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			672 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /* infcover.c -- test zlib's inflate routines with full code coverage
 | ||
|  |  * Copyright (C) 2011, 2016 Mark Adler | ||
|  |  * For conditions of distribution and use, see copyright notice in zlib.h | ||
|  |  */ | ||
|  | 
 | ||
|  | /* to use, do: ./configure --cover && make cover */ | ||
|  | 
 | ||
|  | #include <stdio.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | #include <string.h>
 | ||
|  | #include <assert.h>
 | ||
|  | #include "zlib.h"
 | ||
|  | 
 | ||
|  | /* get definition of internal structure so we can mess with it (see pull()),
 | ||
|  |    and so we can call inflate_trees() (see cover5()) */ | ||
|  | #define ZLIB_INTERNAL
 | ||
|  | #include "inftrees.h"
 | ||
|  | #include "inflate.h"
 | ||
|  | 
 | ||
|  | #define local static
 | ||
|  | 
 | ||
|  | /* -- memory tracking routines -- */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |    These memory tracking routines are provided to zlib and track all of zlib's | ||
|  |    allocations and deallocations, check for LIFO operations, keep a current | ||
|  |    and high water mark of total bytes requested, optionally set a limit on the | ||
|  |    total memory that can be allocated, and when done check for memory leaks. | ||
|  | 
 | ||
|  |    They are used as follows: | ||
|  | 
 | ||
|  |    z_stream strm; | ||
|  |    mem_setup(&strm)         initializes the memory tracking and sets the | ||
|  |                             zalloc, zfree, and opaque members of strm to use | ||
|  |                             memory tracking for all zlib operations on strm | ||
|  |    mem_limit(&strm, limit)  sets a limit on the total bytes requested -- a | ||
|  |                             request that exceeds this limit will result in an | ||
|  |                             allocation failure (returns NULL) -- setting the | ||
|  |                             limit to zero means no limit, which is the default | ||
|  |                             after mem_setup() | ||
|  |    mem_used(&strm, "msg")   prints to stderr "msg" and the total bytes used | ||
|  |    mem_high(&strm, "msg")   prints to stderr "msg" and the high water mark | ||
|  |    mem_done(&strm, "msg")   ends memory tracking, releases all allocations | ||
|  |                             for the tracking as well as leaked zlib blocks, if | ||
|  |                             any.  If there was anything unusual, such as leaked | ||
|  |                             blocks, non-FIFO frees, or frees of addresses not | ||
|  |                             allocated, then "msg" and information about the | ||
|  |                             problem is printed to stderr.  If everything is | ||
|  |                             normal, nothing is printed. mem_done resets the | ||
|  |                             strm members to Z_NULL to use the default memory | ||
|  |                             allocation routines on the next zlib initialization | ||
|  |                             using strm. | ||
|  |  */ | ||
|  | 
 | ||
|  | /* these items are strung together in a linked list, one for each allocation */ | ||
|  | struct mem_item { | ||
|  |     void *ptr;                  /* pointer to allocated memory */ | ||
|  |     size_t size;                /* requested size of allocation */ | ||
|  |     struct mem_item *next;      /* pointer to next item in list, or NULL */ | ||
|  | }; | ||
|  | 
 | ||
|  | /* this structure is at the root of the linked list, and tracks statistics */ | ||
|  | struct mem_zone { | ||
|  |     struct mem_item *first;     /* pointer to first item in list, or NULL */ | ||
|  |     size_t total, highwater;    /* total allocations, and largest total */ | ||
|  |     size_t limit;               /* memory allocation limit, or 0 if no limit */ | ||
|  |     int notlifo, rogue;         /* counts of non-LIFO frees and rogue frees */ | ||
|  | }; | ||
|  | 
 | ||
|  | /* memory allocation routine to pass to zlib */ | ||
|  | local void *mem_alloc(void *mem, unsigned count, unsigned size) | ||
|  | { | ||
|  |     void *ptr; | ||
|  |     struct mem_item *item; | ||
|  |     struct mem_zone *zone = mem; | ||
|  |     size_t len = count * (size_t)size; | ||
|  | 
 | ||
|  |     /* induced allocation failure */ | ||
|  |     if (zone == NULL || (zone->limit && zone->total + len > zone->limit)) | ||
|  |         return NULL; | ||
|  | 
 | ||
|  |     /* perform allocation using the standard library, fill memory with a
 | ||
|  |        non-zero value to make sure that the code isn't depending on zeros */ | ||
|  |     ptr = malloc(len); | ||
|  |     if (ptr == NULL) | ||
|  |         return NULL; | ||
|  |     memset(ptr, 0xa5, len); | ||
|  | 
 | ||
|  |     /* create a new item for the list */ | ||
|  |     item = malloc(sizeof(struct mem_item)); | ||
|  |     if (item == NULL) { | ||
|  |         free(ptr); | ||
|  |         return NULL; | ||
|  |     } | ||
|  |     item->ptr = ptr; | ||
|  |     item->size = len; | ||
|  | 
 | ||
|  |     /* insert item at the beginning of the list */ | ||
|  |     item->next = zone->first; | ||
|  |     zone->first = item; | ||
|  | 
 | ||
|  |     /* update the statistics */ | ||
|  |     zone->total += item->size; | ||
|  |     if (zone->total > zone->highwater) | ||
|  |         zone->highwater = zone->total; | ||
|  | 
 | ||
|  |     /* return the allocated memory */ | ||
|  |     return ptr; | ||
|  | } | ||
|  | 
 | ||
|  | /* memory free routine to pass to zlib */ | ||
|  | local void mem_free(void *mem, void *ptr) | ||
|  | { | ||
|  |     struct mem_item *item, *next; | ||
|  |     struct mem_zone *zone = mem; | ||
|  | 
 | ||
|  |     /* if no zone, just do a free */ | ||
|  |     if (zone == NULL) { | ||
|  |         free(ptr); | ||
|  |         return; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* point next to the item that matches ptr, or NULL if not found -- remove
 | ||
|  |        the item from the linked list if found */ | ||
|  |     next = zone->first; | ||
|  |     if (next) { | ||
|  |         if (next->ptr == ptr) | ||
|  |             zone->first = next->next;   /* first one is it, remove from list */ | ||
|  |         else { | ||
|  |             do {                        /* search the linked list */ | ||
|  |                 item = next; | ||
|  |                 next = item->next; | ||
|  |             } while (next != NULL && next->ptr != ptr); | ||
|  |             if (next) {                 /* if found, remove from linked list */ | ||
|  |                 item->next = next->next; | ||
|  |                 zone->notlifo++;        /* not a LIFO free */ | ||
|  |             } | ||
|  | 
 | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /* if found, update the statistics and free the item */ | ||
|  |     if (next) { | ||
|  |         zone->total -= next->size; | ||
|  |         free(next); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* if not found, update the rogue count */ | ||
|  |     else | ||
|  |         zone->rogue++; | ||
|  | 
 | ||
|  |     /* in any case, do the requested free with the standard library function */ | ||
|  |     free(ptr); | ||
|  | } | ||
|  | 
 | ||
|  | /* set up a controlled memory allocation space for monitoring, set the stream
 | ||
|  |    parameters to the controlled routines, with opaque pointing to the space */ | ||
|  | local void mem_setup(z_stream *strm) | ||
|  | { | ||
|  |     struct mem_zone *zone; | ||
|  | 
 | ||
|  |     zone = malloc(sizeof(struct mem_zone)); | ||
|  |     assert(zone != NULL); | ||
|  |     zone->first = NULL; | ||
|  |     zone->total = 0; | ||
|  |     zone->highwater = 0; | ||
|  |     zone->limit = 0; | ||
|  |     zone->notlifo = 0; | ||
|  |     zone->rogue = 0; | ||
|  |     strm->opaque = zone; | ||
|  |     strm->zalloc = mem_alloc; | ||
|  |     strm->zfree = mem_free; | ||
|  | } | ||
|  | 
 | ||
|  | /* set a limit on the total memory allocation, or 0 to remove the limit */ | ||
|  | local void mem_limit(z_stream *strm, size_t limit) | ||
|  | { | ||
|  |     struct mem_zone *zone = strm->opaque; | ||
|  | 
 | ||
|  |     zone->limit = limit; | ||
|  | } | ||
|  | 
 | ||
|  | /* show the current total requested allocations in bytes */ | ||
|  | local void mem_used(z_stream *strm, char *prefix) | ||
|  | { | ||
|  |     struct mem_zone *zone = strm->opaque; | ||
|  | 
 | ||
|  |     fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total); | ||
|  | } | ||
|  | 
 | ||
|  | /* show the high water allocation in bytes */ | ||
|  | local void mem_high(z_stream *strm, char *prefix) | ||
|  | { | ||
|  |     struct mem_zone *zone = strm->opaque; | ||
|  | 
 | ||
|  |     fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater); | ||
|  | } | ||
|  | 
 | ||
|  | /* release the memory allocation zone -- if there are any surprises, notify */ | ||
|  | local void mem_done(z_stream *strm, char *prefix) | ||
|  | { | ||
|  |     int count = 0; | ||
|  |     struct mem_item *item, *next; | ||
|  |     struct mem_zone *zone = strm->opaque; | ||
|  | 
 | ||
|  |     /* show high water mark */ | ||
|  |     mem_high(strm, prefix); | ||
|  | 
 | ||
|  |     /* free leftover allocations and item structures, if any */ | ||
|  |     item = zone->first; | ||
|  |     while (item != NULL) { | ||
|  |         free(item->ptr); | ||
|  |         next = item->next; | ||
|  |         free(item); | ||
|  |         item = next; | ||
|  |         count++; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* issue alerts about anything unexpected */ | ||
|  |     if (count || zone->total) | ||
|  |         fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n", | ||
|  |                 prefix, zone->total, count); | ||
|  |     if (zone->notlifo) | ||
|  |         fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo); | ||
|  |     if (zone->rogue) | ||
|  |         fprintf(stderr, "** %s: %d frees not recognized\n", | ||
|  |                 prefix, zone->rogue); | ||
|  | 
 | ||
|  |     /* free the zone and delete from the stream */ | ||
|  |     free(zone); | ||
|  |     strm->opaque = Z_NULL; | ||
|  |     strm->zalloc = Z_NULL; | ||
|  |     strm->zfree = Z_NULL; | ||
|  | } | ||
|  | 
 | ||
|  | /* -- inflate test routines -- */ | ||
|  | 
 | ||
|  | /* Decode a hexadecimal string, set *len to length, in[] to the bytes.  This
 | ||
|  |    decodes liberally, in that hex digits can be adjacent, in which case two in | ||
|  |    a row writes a byte.  Or they can be delimited by any non-hex character, | ||
|  |    where the delimiters are ignored except when a single hex digit is followed | ||
|  |    by a delimiter, where that single digit writes a byte.  The returned data is | ||
|  |    allocated and must eventually be freed.  NULL is returned if out of memory. | ||
|  |    If the length is not needed, then len can be NULL. */ | ||
|  | local unsigned char *h2b(const char *hex, unsigned *len) | ||
|  | { | ||
|  |     unsigned char *in, *re; | ||
|  |     unsigned next, val; | ||
|  | 
 | ||
|  |     in = malloc((strlen(hex) + 1) >> 1); | ||
|  |     if (in == NULL) | ||
|  |         return NULL; | ||
|  |     next = 0; | ||
|  |     val = 1; | ||
|  |     do { | ||
|  |         if (*hex >= '0' && *hex <= '9') | ||
|  |             val = (val << 4) + *hex - '0'; | ||
|  |         else if (*hex >= 'A' && *hex <= 'F') | ||
|  |             val = (val << 4) + *hex - 'A' + 10; | ||
|  |         else if (*hex >= 'a' && *hex <= 'f') | ||
|  |             val = (val << 4) + *hex - 'a' + 10; | ||
|  |         else if (val != 1 && val < 32)  /* one digit followed by delimiter */ | ||
|  |             val += 240;                 /* make it look like two digits */ | ||
|  |         if (val > 255) {                /* have two digits */ | ||
|  |             in[next++] = val & 0xff;    /* save the decoded byte */ | ||
|  |             val = 1;                    /* start over */ | ||
|  |         } | ||
|  |     } while (*hex++);       /* go through the loop with the terminating null */ | ||
|  |     if (len != NULL) | ||
|  |         *len = next; | ||
|  |     re = realloc(in, next); | ||
|  |     return re == NULL ? in : re; | ||
|  | } | ||
|  | 
 | ||
|  | /* generic inflate() run, where hex is the hexadecimal input data, what is the
 | ||
|  |    text to include in an error message, step is how much input data to feed | ||
|  |    inflate() on each call, or zero to feed it all, win is the window bits | ||
|  |    parameter to inflateInit2(), len is the size of the output buffer, and err | ||
|  |    is the error code expected from the first inflate() call (the second | ||
|  |    inflate() call is expected to return Z_STREAM_END).  If win is 47, then | ||
|  |    header information is collected with inflateGetHeader().  If a zlib stream | ||
|  |    is looking for a dictionary, then an empty dictionary is provided. | ||
|  |    inflate() is run until all of the input data is consumed. */ | ||
|  | local void inf(char *hex, char *what, unsigned step, int win, unsigned len, | ||
|  |                int err) | ||
|  | { | ||
|  |     int ret; | ||
|  |     unsigned have; | ||
|  |     unsigned char *in, *out; | ||
|  |     z_stream strm, copy; | ||
|  |     gz_header head; | ||
|  | 
 | ||
|  |     mem_setup(&strm); | ||
|  |     strm.avail_in = 0; | ||
|  |     strm.next_in = Z_NULL; | ||
|  |     ret = inflateInit2(&strm, win); | ||
|  |     if (ret != Z_OK) { | ||
|  |         mem_done(&strm, what); | ||
|  |         return; | ||
|  |     } | ||
|  |     out = malloc(len);                          assert(out != NULL); | ||
|  |     if (win == 47) { | ||
|  |         head.extra = out; | ||
|  |         head.extra_max = len; | ||
|  |         head.name = out; | ||
|  |         head.name_max = len; | ||
|  |         head.comment = out; | ||
|  |         head.comm_max = len; | ||
|  |         ret = inflateGetHeader(&strm, &head);   assert(ret == Z_OK); | ||
|  |     } | ||
|  |     in = h2b(hex, &have);                       assert(in != NULL); | ||
|  |     if (step == 0 || step > have) | ||
|  |         step = have; | ||
|  |     strm.avail_in = step; | ||
|  |     have -= step; | ||
|  |     strm.next_in = in; | ||
|  |     do { | ||
|  |         strm.avail_out = len; | ||
|  |         strm.next_out = out; | ||
|  |         ret = inflate(&strm, Z_NO_FLUSH);       assert(err == 9 || ret == err); | ||
|  |         if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT) | ||
|  |             break; | ||
|  |         if (ret == Z_NEED_DICT) { | ||
|  |             ret = inflateSetDictionary(&strm, in, 1); | ||
|  |                                                 assert(ret == Z_DATA_ERROR); | ||
|  |             mem_limit(&strm, 1); | ||
|  |             ret = inflateSetDictionary(&strm, out, 0); | ||
|  |                                                 assert(ret == Z_MEM_ERROR); | ||
|  |             mem_limit(&strm, 0); | ||
|  |             ((struct inflate_state *)strm.state)->mode = DICT; | ||
|  |             ret = inflateSetDictionary(&strm, out, 0); | ||
|  |                                                 assert(ret == Z_OK); | ||
|  |             ret = inflate(&strm, Z_NO_FLUSH);   assert(ret == Z_BUF_ERROR); | ||
|  |         } | ||
|  |         ret = inflateCopy(©, &strm);        assert(ret == Z_OK); | ||
|  |         ret = inflateEnd(©);                assert(ret == Z_OK); | ||
|  |         err = 9;                        /* don't care next time around */ | ||
|  |         have += strm.avail_in; | ||
|  |         strm.avail_in = step > have ? have : step; | ||
|  |         have -= strm.avail_in; | ||
|  |     } while (strm.avail_in); | ||
|  |     free(in); | ||
|  |     free(out); | ||
|  |     ret = inflateReset2(&strm, -8);             assert(ret == Z_OK); | ||
|  |     ret = inflateEnd(&strm);                    assert(ret == Z_OK); | ||
|  |     mem_done(&strm, what); | ||
|  | } | ||
|  | 
 | ||
|  | /* cover all of the lines in inflate.c up to inflate() */ | ||
|  | local void cover_support(void) | ||
|  | { | ||
|  |     int ret; | ||
|  |     z_stream strm; | ||
|  | 
 | ||
|  |     mem_setup(&strm); | ||
|  |     strm.avail_in = 0; | ||
|  |     strm.next_in = Z_NULL; | ||
|  |     ret = inflateInit(&strm);                   assert(ret == Z_OK); | ||
|  |     mem_used(&strm, "inflate init"); | ||
|  |     ret = inflatePrime(&strm, 5, 31);           assert(ret == Z_OK); | ||
|  |     ret = inflatePrime(&strm, -1, 0);           assert(ret == Z_OK); | ||
|  |     ret = inflateSetDictionary(&strm, Z_NULL, 0); | ||
|  |                                                 assert(ret == Z_STREAM_ERROR); | ||
|  |     ret = inflateEnd(&strm);                    assert(ret == Z_OK); | ||
|  |     mem_done(&strm, "prime"); | ||
|  | 
 | ||
|  |     inf("63 0", "force window allocation", 0, -15, 1, Z_OK); | ||
|  |     inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK); | ||
|  |     inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK); | ||
|  |     inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END); | ||
|  |     inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR); | ||
|  | 
 | ||
|  |     mem_setup(&strm); | ||
|  |     strm.avail_in = 0; | ||
|  |     strm.next_in = Z_NULL; | ||
|  |     ret = inflateInit_(&strm, ZLIB_VERSION - 1, (int)sizeof(z_stream)); | ||
|  |                                                 assert(ret == Z_VERSION_ERROR); | ||
|  |     mem_done(&strm, "wrong version"); | ||
|  | 
 | ||
|  |     strm.avail_in = 0; | ||
|  |     strm.next_in = Z_NULL; | ||
|  |     ret = inflateInit(&strm);                   assert(ret == Z_OK); | ||
|  |     ret = inflateEnd(&strm);                    assert(ret == Z_OK); | ||
|  |     fputs("inflate built-in memory routines\n", stderr); | ||
|  | } | ||
|  | 
 | ||
|  | /* cover all inflate() header and trailer cases and code after inflate() */ | ||
|  | local void cover_wrap(void) | ||
|  | { | ||
|  |     int ret; | ||
|  |     z_stream strm, copy; | ||
|  |     unsigned char dict[257]; | ||
|  | 
 | ||
|  |     ret = inflate(Z_NULL, 0);                   assert(ret == Z_STREAM_ERROR); | ||
|  |     ret = inflateEnd(Z_NULL);                   assert(ret == Z_STREAM_ERROR); | ||
|  |     ret = inflateCopy(Z_NULL, Z_NULL);          assert(ret == Z_STREAM_ERROR); | ||
|  |     fputs("inflate bad parameters\n", stderr); | ||
|  | 
 | ||
|  |     inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR); | ||
|  |     inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR); | ||
|  |     inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR); | ||
|  |     inf("8 99", "set window size from header", 0, 0, 0, Z_OK); | ||
|  |     inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR); | ||
|  |     inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END); | ||
|  |     inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1, | ||
|  |         Z_DATA_ERROR); | ||
|  |     inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length", | ||
|  |         0, 47, 0, Z_STREAM_END); | ||
|  |     inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR); | ||
|  |     inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT); | ||
|  |     inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK); | ||
|  | 
 | ||
|  |     mem_setup(&strm); | ||
|  |     strm.avail_in = 0; | ||
|  |     strm.next_in = Z_NULL; | ||
|  |     ret = inflateInit2(&strm, -8); | ||
|  |     strm.avail_in = 2; | ||
|  |     strm.next_in = (void *)"\x63"; | ||
|  |     strm.avail_out = 1; | ||
|  |     strm.next_out = (void *)&ret; | ||
|  |     mem_limit(&strm, 1); | ||
|  |     ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR); | ||
|  |     ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR); | ||
|  |     mem_limit(&strm, 0); | ||
|  |     memset(dict, 0, 257); | ||
|  |     ret = inflateSetDictionary(&strm, dict, 257); | ||
|  |                                                 assert(ret == Z_OK); | ||
|  |     mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256); | ||
|  |     ret = inflatePrime(&strm, 16, 0);           assert(ret == Z_OK); | ||
|  |     strm.avail_in = 2; | ||
|  |     strm.next_in = (void *)"\x80"; | ||
|  |     ret = inflateSync(&strm);                   assert(ret == Z_DATA_ERROR); | ||
|  |     ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_STREAM_ERROR); | ||
|  |     strm.avail_in = 4; | ||
|  |     strm.next_in = (void *)"\0\0\xff\xff"; | ||
|  |     ret = inflateSync(&strm);                   assert(ret == Z_OK); | ||
|  |     (void)inflateSyncPoint(&strm); | ||
|  |     ret = inflateCopy(©, &strm);            assert(ret == Z_MEM_ERROR); | ||
|  |     mem_limit(&strm, 0); | ||
|  |     ret = inflateUndermine(&strm, 1);           assert(ret == Z_DATA_ERROR); | ||
|  |     (void)inflateMark(&strm); | ||
|  |     ret = inflateEnd(&strm);                    assert(ret == Z_OK); | ||
|  |     mem_done(&strm, "miscellaneous, force memory errors"); | ||
|  | } | ||
|  | 
 | ||
|  | /* input and output functions for inflateBack() */ | ||
|  | local unsigned pull(void *desc, unsigned char **buf) | ||
|  | { | ||
|  |     static unsigned int next = 0; | ||
|  |     static unsigned char dat[] = {0x63, 0, 2, 0}; | ||
|  |     struct inflate_state *state; | ||
|  | 
 | ||
|  |     if (desc == Z_NULL) { | ||
|  |         next = 0; | ||
|  |         return 0;   /* no input (already provided at next_in) */ | ||
|  |     } | ||
|  |     state = (void *)((z_stream *)desc)->state; | ||
|  |     if (state != Z_NULL) | ||
|  |         state->mode = SYNC;     /* force an otherwise impossible situation */ | ||
|  |     return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0; | ||
|  | } | ||
|  | 
 | ||
|  | local int push(void *desc, unsigned char *buf, unsigned len) | ||
|  | { | ||
|  |     buf += len; | ||
|  |     return desc != Z_NULL;      /* force error if desc not null */ | ||
|  | } | ||
|  | 
 | ||
|  | /* cover inflateBack() up to common deflate data cases and after those */ | ||
|  | local void cover_back(void) | ||
|  | { | ||
|  |     int ret; | ||
|  |     z_stream strm; | ||
|  |     unsigned char win[32768]; | ||
|  | 
 | ||
|  |     ret = inflateBackInit_(Z_NULL, 0, win, 0, 0); | ||
|  |                                                 assert(ret == Z_VERSION_ERROR); | ||
|  |     ret = inflateBackInit(Z_NULL, 0, win);      assert(ret == Z_STREAM_ERROR); | ||
|  |     ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL); | ||
|  |                                                 assert(ret == Z_STREAM_ERROR); | ||
|  |     ret = inflateBackEnd(Z_NULL);               assert(ret == Z_STREAM_ERROR); | ||
|  |     fputs("inflateBack bad parameters\n", stderr); | ||
|  | 
 | ||
|  |     mem_setup(&strm); | ||
|  |     ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK); | ||
|  |     strm.avail_in = 2; | ||
|  |     strm.next_in = (void *)"\x03"; | ||
|  |     ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); | ||
|  |                                                 assert(ret == Z_STREAM_END); | ||
|  |         /* force output error */ | ||
|  |     strm.avail_in = 3; | ||
|  |     strm.next_in = (void *)"\x63\x00"; | ||
|  |     ret = inflateBack(&strm, pull, Z_NULL, push, &strm); | ||
|  |                                                 assert(ret == Z_BUF_ERROR); | ||
|  |         /* force mode error by mucking with state */ | ||
|  |     ret = inflateBack(&strm, pull, &strm, push, Z_NULL); | ||
|  |                                                 assert(ret == Z_STREAM_ERROR); | ||
|  |     ret = inflateBackEnd(&strm);                assert(ret == Z_OK); | ||
|  |     mem_done(&strm, "inflateBack bad state"); | ||
|  | 
 | ||
|  |     ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK); | ||
|  |     ret = inflateBackEnd(&strm);                assert(ret == Z_OK); | ||
|  |     fputs("inflateBack built-in memory routines\n", stderr); | ||
|  | } | ||
|  | 
 | ||
|  | /* do a raw inflate of data in hexadecimal with both inflate and inflateBack */ | ||
|  | local int try(char *hex, char *id, int err) | ||
|  | { | ||
|  |     int ret; | ||
|  |     unsigned len, size; | ||
|  |     unsigned char *in, *out, *win; | ||
|  |     char *prefix; | ||
|  |     z_stream strm; | ||
|  | 
 | ||
|  |     /* convert to hex */ | ||
|  |     in = h2b(hex, &len); | ||
|  |     assert(in != NULL); | ||
|  | 
 | ||
|  |     /* allocate work areas */ | ||
|  |     size = len << 3; | ||
|  |     out = malloc(size); | ||
|  |     assert(out != NULL); | ||
|  |     win = malloc(32768); | ||
|  |     assert(win != NULL); | ||
|  |     prefix = malloc(strlen(id) + 6); | ||
|  |     assert(prefix != NULL); | ||
|  | 
 | ||
|  |     /* first with inflate */ | ||
|  |     strcpy(prefix, id); | ||
|  |     strcat(prefix, "-late"); | ||
|  |     mem_setup(&strm); | ||
|  |     strm.avail_in = 0; | ||
|  |     strm.next_in = Z_NULL; | ||
|  |     ret = inflateInit2(&strm, err < 0 ? 47 : -15); | ||
|  |     assert(ret == Z_OK); | ||
|  |     strm.avail_in = len; | ||
|  |     strm.next_in = in; | ||
|  |     do { | ||
|  |         strm.avail_out = size; | ||
|  |         strm.next_out = out; | ||
|  |         ret = inflate(&strm, Z_TREES); | ||
|  |         assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR); | ||
|  |         if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT) | ||
|  |             break; | ||
|  |     } while (strm.avail_in || strm.avail_out == 0); | ||
|  |     if (err) { | ||
|  |         assert(ret == Z_DATA_ERROR); | ||
|  |         assert(strcmp(id, strm.msg) == 0); | ||
|  |     } | ||
|  |     inflateEnd(&strm); | ||
|  |     mem_done(&strm, prefix); | ||
|  | 
 | ||
|  |     /* then with inflateBack */ | ||
|  |     if (err >= 0) { | ||
|  |         strcpy(prefix, id); | ||
|  |         strcat(prefix, "-back"); | ||
|  |         mem_setup(&strm); | ||
|  |         ret = inflateBackInit(&strm, 15, win); | ||
|  |         assert(ret == Z_OK); | ||
|  |         strm.avail_in = len; | ||
|  |         strm.next_in = in; | ||
|  |         ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); | ||
|  |         assert(ret != Z_STREAM_ERROR); | ||
|  |         if (err) { | ||
|  |             assert(ret == Z_DATA_ERROR); | ||
|  |             assert(strcmp(id, strm.msg) == 0); | ||
|  |         } | ||
|  |         inflateBackEnd(&strm); | ||
|  |         mem_done(&strm, prefix); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* clean up */ | ||
|  |     free(prefix); | ||
|  |     free(win); | ||
|  |     free(out); | ||
|  |     free(in); | ||
|  |     return ret; | ||
|  | } | ||
|  | 
 | ||
|  | /* cover deflate data cases in both inflate() and inflateBack() */ | ||
|  | local void cover_inflate(void) | ||
|  | { | ||
|  |     try("0 0 0 0 0", "invalid stored block lengths", 1); | ||
|  |     try("3 0", "fixed", 0); | ||
|  |     try("6", "invalid block type", 1); | ||
|  |     try("1 1 0 fe ff 0", "stored", 0); | ||
|  |     try("fc 0 0", "too many length or distance symbols", 1); | ||
|  |     try("4 0 fe ff", "invalid code lengths set", 1); | ||
|  |     try("4 0 24 49 0", "invalid bit length repeat", 1); | ||
|  |     try("4 0 24 e9 ff ff", "invalid bit length repeat", 1); | ||
|  |     try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1); | ||
|  |     try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0", | ||
|  |         "invalid literal/lengths set", 1); | ||
|  |     try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1); | ||
|  |     try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1); | ||
|  |     try("2 7e ff ff", "invalid distance code", 1); | ||
|  |     try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1); | ||
|  | 
 | ||
|  |     /* also trailer mismatch just in inflate() */ | ||
|  |     try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1); | ||
|  |     try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1", | ||
|  |         "incorrect length check", -1); | ||
|  |     try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0); | ||
|  |     try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f", | ||
|  |         "long code", 0); | ||
|  |     try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0); | ||
|  |     try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c", | ||
|  |         "long distance and extra", 0); | ||
|  |     try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " | ||
|  |         "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0); | ||
|  |     inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258, | ||
|  |         Z_STREAM_END); | ||
|  |     inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK); | ||
|  | } | ||
|  | 
 | ||
|  | /* cover remaining lines in inftrees.c */ | ||
|  | local void cover_trees(void) | ||
|  | { | ||
|  |     int ret; | ||
|  |     unsigned bits; | ||
|  |     unsigned short lens[16], work[16]; | ||
|  |     code *next, table[ENOUGH_DISTS]; | ||
|  | 
 | ||
|  |     /* we need to call inflate_table() directly in order to manifest not-
 | ||
|  |        enough errors, since zlib insures that enough is always enough */ | ||
|  |     for (bits = 0; bits < 15; bits++) | ||
|  |         lens[bits] = (unsigned short)(bits + 1); | ||
|  |     lens[15] = 15; | ||
|  |     next = table; | ||
|  |     bits = 15; | ||
|  |     ret = inflate_table(DISTS, lens, 16, &next, &bits, work); | ||
|  |                                                 assert(ret == 1); | ||
|  |     next = table; | ||
|  |     bits = 1; | ||
|  |     ret = inflate_table(DISTS, lens, 16, &next, &bits, work); | ||
|  |                                                 assert(ret == 1); | ||
|  |     fputs("inflate_table not enough errors\n", stderr); | ||
|  | } | ||
|  | 
 | ||
|  | /* cover remaining inffast.c decoding and window copying */ | ||
|  | local void cover_fast(void) | ||
|  | { | ||
|  |     inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68" | ||
|  |         " ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR); | ||
|  |     inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49" | ||
|  |         " 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258, | ||
|  |         Z_DATA_ERROR); | ||
|  |     inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258, | ||
|  |         Z_DATA_ERROR); | ||
|  |     inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258, | ||
|  |         Z_DATA_ERROR); | ||
|  |     inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0", | ||
|  |         "fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR); | ||
|  |     inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK); | ||
|  |     inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0", | ||
|  |         "contiguous and wrap around window", 6, -8, 259, Z_OK); | ||
|  |     inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259, | ||
|  |         Z_STREAM_END); | ||
|  | } | ||
|  | 
 | ||
|  | int main(void) | ||
|  | { | ||
|  |     fprintf(stderr, "%s\n", zlibVersion()); | ||
|  |     cover_support(); | ||
|  |     cover_wrap(); | ||
|  |     cover_back(); | ||
|  |     cover_inflate(); | ||
|  |     cover_trees(); | ||
|  |     cover_fast(); | ||
|  |     return 0; | ||
|  | } |