293 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			293 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:47:07 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "rdft/codelet-rdft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 46 FP additions, 32 FP multiplications, | ||
|  |  * (or, 24 additions, 10 multiplications, 22 fused multiply/add), | ||
|  |  * 31 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG; | ||
|  | 	       { | ||
|  | 		    E Tb, Tc, Tj, TI, Tg, TH; | ||
|  | 		    Tb = Ip[0]; | ||
|  | 		    Tc = Im[WS(rs, 2)]; | ||
|  | 		    Td = Tb - Tc; | ||
|  | 		    { | ||
|  | 			 E Th, Ti, Te, Tf; | ||
|  | 			 Th = Ip[WS(rs, 1)]; | ||
|  | 			 Ti = Im[WS(rs, 1)]; | ||
|  | 			 Tj = Th - Ti; | ||
|  | 			 TI = Th + Ti; | ||
|  | 			 Te = Ip[WS(rs, 2)]; | ||
|  | 			 Tf = Im[0]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 TH = Te + Tf; | ||
|  | 		    } | ||
|  | 		    Tn = Tj - Tg; | ||
|  | 		    TO = TH - TI; | ||
|  | 		    TJ = TH + TI; | ||
|  | 		    TN = Tb + Tc; | ||
|  | 		    Tk = Tg + Tj; | ||
|  | 		    Tr = FNMS(KP500000000, Tk, Td); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T9, TE, T6, TD, T1, T2; | ||
|  | 		    T1 = Rp[0]; | ||
|  | 		    T2 = Rm[WS(rs, 2)]; | ||
|  | 		    T3 = T1 + T2; | ||
|  | 		    TC = T1 - T2; | ||
|  | 		    { | ||
|  | 			 E T7, T8, T4, T5; | ||
|  | 			 T7 = Rm[WS(rs, 1)]; | ||
|  | 			 T8 = Rp[WS(rs, 1)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TE = T7 - T8; | ||
|  | 			 T4 = Rp[WS(rs, 2)]; | ||
|  | 			 T5 = Rm[0]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 TD = T4 - T5; | ||
|  | 		    } | ||
|  | 		    Ts = T6 - T9; | ||
|  | 		    TQ = TD - TE; | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    Tm = FNMS(KP500000000, Ta, T3); | ||
|  | 		    TF = TD + TE; | ||
|  | 		    TG = FNMS(KP500000000, TF, TC); | ||
|  | 	       } | ||
|  | 	       Rp[0] = T3 + Ta; | ||
|  | 	       Rm[0] = Td + Tk; | ||
|  | 	       { | ||
|  | 		    E To, Tt, Tp, Tu, Tl, Tq; | ||
|  | 		    To = FNMS(KP866025403, Tn, Tm); | ||
|  | 		    Tt = FNMS(KP866025403, Ts, Tr); | ||
|  | 		    Tl = W[2]; | ||
|  | 		    Tp = Tl * To; | ||
|  | 		    Tu = Tl * Tt; | ||
|  | 		    Tq = W[3]; | ||
|  | 		    Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp); | ||
|  | 		    Rm[WS(rs, 1)] = FMA(Tq, To, Tu); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T13, TZ, T11, T12, T14, T10; | ||
|  | 		    T13 = TN + TO; | ||
|  | 		    T10 = TC + TF; | ||
|  | 		    TZ = W[4]; | ||
|  | 		    T11 = TZ * T10; | ||
|  | 		    T12 = W[5]; | ||
|  | 		    T14 = T12 * T10; | ||
|  | 		    Ip[WS(rs, 1)] = FNMS(T12, T13, T11); | ||
|  | 		    Im[WS(rs, 1)] = FMA(TZ, T13, T14); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tw, Tz, Tx, TA, Tv, Ty; | ||
|  | 		    Tw = FMA(KP866025403, Tn, Tm); | ||
|  | 		    Tz = FMA(KP866025403, Ts, Tr); | ||
|  | 		    Tv = W[6]; | ||
|  | 		    Tx = Tv * Tw; | ||
|  | 		    TA = Tv * Tz; | ||
|  | 		    Ty = W[7]; | ||
|  | 		    Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx); | ||
|  | 		    Rm[WS(rs, 2)] = FMA(Ty, Tw, TA); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK; | ||
|  | 		    TP = FNMS(KP500000000, TO, TN); | ||
|  | 		    TR = FMA(KP866025403, TQ, TP); | ||
|  | 		    TX = FNMS(KP866025403, TQ, TP); | ||
|  | 		    TU = FMA(KP866025403, TJ, TG); | ||
|  | 		    TT = W[8]; | ||
|  | 		    TV = TT * TU; | ||
|  | 		    TW = W[9]; | ||
|  | 		    TY = TW * TU; | ||
|  | 		    TK = FNMS(KP866025403, TJ, TG); | ||
|  | 		    TB = W[0]; | ||
|  | 		    TL = TB * TK; | ||
|  | 		    TM = W[1]; | ||
|  | 		    TS = TM * TK; | ||
|  | 		    Ip[0] = FNMS(TM, TR, TL); | ||
|  | 		    Im[0] = FMA(TB, TR, TS); | ||
|  | 		    Ip[WS(rs, 2)] = FNMS(TW, TX, TV); | ||
|  | 		    Im[WS(rs, 2)] = FMA(TT, TX, TY); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 6 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 24, 10, 22, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 46 FP additions, 28 FP multiplications, | ||
|  |  * (or, 32 additions, 14 multiplications, 14 fused multiply/add), | ||
|  |  * 25 stack variables, 2 constants, and 24 memory accesses | ||
|  |  */ | ||
|  | #include "rdft/scalar/hc2cb.h"
 | ||
|  | 
 | ||
|  | static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DK(KP500000000, +0.500000000000000000000000000000000000000000000); | ||
|  |      DK(KP866025403, +0.866025403784438646763723170752936183471402627); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { | ||
|  | 	       E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH; | ||
|  | 	       { | ||
|  | 		    E T1, T2, Tb, Tc; | ||
|  | 		    T1 = Rp[0]; | ||
|  | 		    T2 = Rm[WS(rs, 2)]; | ||
|  | 		    T3 = T1 + T2; | ||
|  | 		    Ty = T1 - T2; | ||
|  | 		    Tb = Ip[0]; | ||
|  | 		    Tc = Im[WS(rs, 2)]; | ||
|  | 		    Td = Tb - Tc; | ||
|  | 		    TE = Tb + Tc; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E T6, Tz, T9, TA; | ||
|  | 		    { | ||
|  | 			 E T4, T5, T7, T8; | ||
|  | 			 T4 = Rp[WS(rs, 2)]; | ||
|  | 			 T5 = Rm[0]; | ||
|  | 			 T6 = T4 + T5; | ||
|  | 			 Tz = T4 - T5; | ||
|  | 			 T7 = Rm[WS(rs, 1)]; | ||
|  | 			 T8 = Rp[WS(rs, 1)]; | ||
|  | 			 T9 = T7 + T8; | ||
|  | 			 TA = T7 - T8; | ||
|  | 		    } | ||
|  | 		    Ta = T6 + T9; | ||
|  | 		    TO = KP866025403 * (Tz - TA); | ||
|  | 		    Tr = KP866025403 * (T6 - T9); | ||
|  | 		    TB = Tz + TA; | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E Tg, TG, Tj, TF; | ||
|  | 		    { | ||
|  | 			 E Te, Tf, Th, Ti; | ||
|  | 			 Te = Ip[WS(rs, 2)]; | ||
|  | 			 Tf = Im[0]; | ||
|  | 			 Tg = Te - Tf; | ||
|  | 			 TG = Te + Tf; | ||
|  | 			 Th = Ip[WS(rs, 1)]; | ||
|  | 			 Ti = Im[WS(rs, 1)]; | ||
|  | 			 Tj = Th - Ti; | ||
|  | 			 TF = Th + Ti; | ||
|  | 		    } | ||
|  | 		    Tk = Tg + Tj; | ||
|  | 		    TL = KP866025403 * (TG + TF); | ||
|  | 		    Tn = KP866025403 * (Tj - Tg); | ||
|  | 		    TH = TF - TG; | ||
|  | 	       } | ||
|  | 	       Rp[0] = T3 + Ta; | ||
|  | 	       Rm[0] = Td + Tk; | ||
|  | 	       { | ||
|  | 		    E TC, TI, Tx, TD; | ||
|  | 		    TC = Ty + TB; | ||
|  | 		    TI = TE - TH; | ||
|  | 		    Tx = W[4]; | ||
|  | 		    TD = W[5]; | ||
|  | 		    Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC); | ||
|  | 		    Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI); | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E To, Tu, Ts, Tw, Tm, Tq; | ||
|  | 		    Tm = FNMS(KP500000000, Ta, T3); | ||
|  | 		    To = Tm - Tn; | ||
|  | 		    Tu = Tm + Tn; | ||
|  | 		    Tq = FNMS(KP500000000, Tk, Td); | ||
|  | 		    Ts = Tq - Tr; | ||
|  | 		    Tw = Tr + Tq; | ||
|  | 		    { | ||
|  | 			 E Tl, Tp, Tt, Tv; | ||
|  | 			 Tl = W[2]; | ||
|  | 			 Tp = W[3]; | ||
|  | 			 Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To); | ||
|  | 			 Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To); | ||
|  | 			 Tt = W[6]; | ||
|  | 			 Tv = W[7]; | ||
|  | 			 Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu); | ||
|  | 			 Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	       { | ||
|  | 		    E TM, TS, TQ, TU, TK, TP; | ||
|  | 		    TK = FNMS(KP500000000, TB, Ty); | ||
|  | 		    TM = TK - TL; | ||
|  | 		    TS = TK + TL; | ||
|  | 		    TP = FMA(KP500000000, TH, TE); | ||
|  | 		    TQ = TO + TP; | ||
|  | 		    TU = TP - TO; | ||
|  | 		    { | ||
|  | 			 E TJ, TN, TR, TT; | ||
|  | 			 TJ = W[0]; | ||
|  | 			 TN = W[1]; | ||
|  | 			 Ip[0] = FNMS(TN, TQ, TJ * TM); | ||
|  | 			 Im[0] = FMA(TN, TM, TJ * TQ); | ||
|  | 			 TR = W[8]; | ||
|  | 			 TT = W[9]; | ||
|  | 			 Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS); | ||
|  | 			 Im[WS(rs, 2)] = FMA(TT, TS, TR * TU); | ||
|  | 		    } | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      { TW_FULL, 1, 6 }, | ||
|  |      { TW_NEXT, 1, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, { 32, 14, 14, 0 } }; | ||
|  | 
 | ||
|  | void X(codelet_hc2cb_6) (planner *p) { | ||
|  |      X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); | ||
|  | } | ||
|  | #endif
 |