300 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			300 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * VSX SIMD implementation added 2015 Erik Lindahl. | ||
|  |  * Erik Lindahl places his modifications in the public domain. | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
 | ||
|  | #  error "VSX only works in single or double precision"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define DS(d,s) s /* single-precision option */
 | ||
|  | #  define SUFF(name) name ## s
 | ||
|  | #else
 | ||
|  | #  define DS(d,s) d /* double-precision option */
 | ||
|  | #  define SUFF(name) name ## d
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define SIMD_SUFFIX  _vsx  /* for renaming */
 | ||
|  | #define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
 | ||
|  | #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
 | ||
|  | #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
 | ||
|  | 
 | ||
|  | #include <altivec.h>
 | ||
|  | #include <stdio.h>
 | ||
|  | 
 | ||
|  | typedef DS(vector double,vector float) V; | ||
|  | 
 | ||
|  | #define VADD(a,b)   vec_add(a,b)
 | ||
|  | #define VSUB(a,b)   vec_sub(a,b)
 | ||
|  | #define VMUL(a,b)   vec_mul(a,b)
 | ||
|  | #define VXOR(a,b)   vec_xor(a,b)
 | ||
|  | #define UNPCKL(a,b) vec_mergel(a,b)
 | ||
|  | #define UNPCKH(a,b) vec_mergeh(a,b)
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #    define VDUPL(a)    ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
 | ||
|  | #    define VDUPH(a)    ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
 | ||
|  | #else
 | ||
|  | #    define VDUPL(a)    ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
 | ||
|  | #    define VDUPH(a)    ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static inline V LDK(R f) { return vec_splats(f); } | ||
|  | 
 | ||
|  | #define DVK(var, val) const R var = K(val)
 | ||
|  | 
 | ||
|  | static inline V VCONJ(V x) | ||
|  | { | ||
|  |   const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0))); | ||
|  |   return vec_xor(x, pmpm); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V LDA(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  | #ifdef __ibmxl__
 | ||
|  |   return vec_xl(0,(DS(double,float) *)x); | ||
|  | #else
 | ||
|  |   return (*(const V *)(x)); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  | #ifdef __ibmxl__
 | ||
|  |   vec_xst(v,0,x); | ||
|  | #else
 | ||
|  |   *(V *)x = v; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline V FLIP_RI(V x) | ||
|  | { | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  |   const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 }; | ||
|  | #else
 | ||
|  |   const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 }; | ||
|  | #endif
 | ||
|  |   return vec_perm(x,x,perm); | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | 
 | ||
|  | static inline V LD(const R *x, INT ivs, const R *aligned_like) | ||
|  | { | ||
|  |   const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23}; | ||
|  | 
 | ||
|  |   return vec_perm((vector float)vec_splats(*(double *)(x)), | ||
|  | 		  (vector float)vec_splats(*(double *)(x+ivs)),perm); | ||
|  | } | ||
|  | 
 | ||
|  | static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |   *(double *)(x+ovs) = vec_extract( (vector double)v, 1 ); | ||
|  |   *(double *)x       = vec_extract( (vector double)v, 0 ); | ||
|  | } | ||
|  | #else
 | ||
|  | /* DOUBLE */ | ||
|  | 
 | ||
|  | #  define LD LDA
 | ||
|  | #  define ST STA
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define STM2 DS(STA,ST)
 | ||
|  | #define STN2(x, v0, v1, ovs) /* nop */
 | ||
|  | 
 | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | 
 | ||
|  | #  define STM4(x, v, ovs, aligned_like) /* no-op */
 | ||
|  | static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs) | ||
|  | { | ||
|  |     V xxx0, xxx1, xxx2, xxx3; | ||
|  |     xxx0 = vec_mergeh(v0,v1); | ||
|  |     xxx1 = vec_mergel(v0,v1); | ||
|  |     xxx2 = vec_mergeh(v2,v3); | ||
|  |     xxx3 = vec_mergel(v2,v3); | ||
|  |     *(double *)x           = vec_extract( (vector double)xxx0, 0 ); | ||
|  |     *(double *)(x+ovs)     = vec_extract( (vector double)xxx0, 1 ); | ||
|  |     *(double *)(x+2*ovs)   = vec_extract( (vector double)xxx1, 0 ); | ||
|  |     *(double *)(x+3*ovs)   = vec_extract( (vector double)xxx1, 1 ); | ||
|  |     *(double *)(x+2)       = vec_extract( (vector double)xxx2, 0 ); | ||
|  |     *(double *)(x+ovs+2)   = vec_extract( (vector double)xxx2, 1 ); | ||
|  |     *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 ); | ||
|  |     *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 ); | ||
|  | } | ||
|  | #else /* !FFTW_SINGLE */
 | ||
|  | 
 | ||
|  | static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) | ||
|  | { | ||
|  |      (void)aligned_like; /* UNUSED */ | ||
|  |      x[0]    = vec_extract(v,0); | ||
|  |      x[ovs]  = vec_extract(v,1); | ||
|  | } | ||
|  | #  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static inline V VBYI(V x) | ||
|  | { | ||
|  |      /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
 | ||
|  |         but gcc and xlc treat the permutation bits differently, and | ||
|  |         gcc-6 seems to generate incorrect code when using | ||
|  |         __builtin_crypto_vpermxor() (i.e., VBYI() works for a small | ||
|  |         test case but fails in the large). | ||
|  | 
 | ||
|  |         Punt on vpermxor() for now and do the simple thing. | ||
|  |      */ | ||
|  |      return FLIP_RI(VCONJ(x)); | ||
|  | } | ||
|  | 
 | ||
|  | /* FMA support */ | ||
|  | #define VFMA(a, b, c)  vec_madd(a,b,c)
 | ||
|  | #define VFNMS(a, b, c) vec_nmsub(a,b,c)
 | ||
|  | #define VFMS(a, b, c)  vec_msub(a,b,c)
 | ||
|  | #define VFMAI(b, c)    VADD(c, VBYI(b))
 | ||
|  | #define VFNMSI(b, c)   VSUB(c, VBYI(b))
 | ||
|  | #define VFMACONJ(b,c)  VADD(VCONJ(b),c)
 | ||
|  | #define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
 | ||
|  | #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
 | ||
|  | 
 | ||
|  | static inline V VZMUL(V tx, V sr) | ||
|  | { | ||
|  |     V tr = VDUPL(tx); | ||
|  |     V ti = VDUPH(tx); | ||
|  |     tr = VMUL(sr, tr); | ||
|  |     sr = VBYI(sr); | ||
|  |     return VFMA(ti, sr, tr); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULJ(V tx, V sr) | ||
|  | { | ||
|  |     V tr = VDUPL(tx); | ||
|  |     V ti = VDUPH(tx); | ||
|  |     tr = VMUL(sr, tr); | ||
|  |     sr = VBYI(sr); | ||
|  |     return VFNMS(ti, sr, tr); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULI(V tx, V sr) | ||
|  | { | ||
|  |     V tr = VDUPL(tx); | ||
|  |     V ti = VDUPH(tx); | ||
|  |     ti = VMUL(ti, sr); | ||
|  |     sr = VBYI(sr); | ||
|  |     return VFMS(tr, sr, ti); | ||
|  | } | ||
|  | 
 | ||
|  | static inline V VZMULIJ(V tx, V sr) | ||
|  | { | ||
|  |     V tr = VDUPL(tx); | ||
|  |     V ti = VDUPH(tx); | ||
|  |     ti = VMUL(ti, sr); | ||
|  |     sr = VBYI(sr); | ||
|  |     return VFMA(tr, sr, ti); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #1: compact, slower */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTW1(v,x)  \
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} | ||
|  | static inline V BYTW1(const R *t, V sr) | ||
|  | { | ||
|  |      V tx = LDA(t,0,t); | ||
|  |      V tr = UNPCKH(tx, tx); | ||
|  |      V ti = UNPCKL(tx, tx); | ||
|  |      tr = VMUL(tr, sr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFMA(ti, sr, tr); | ||
|  | } | ||
|  | static inline V BYTWJ1(const R *t, V sr) | ||
|  | { | ||
|  |      V tx = LDA(t,0,t); | ||
|  |      V tr = UNPCKH(tx, tx); | ||
|  |      V ti = UNPCKL(tx, tx); | ||
|  |      tr = VMUL(tr, sr); | ||
|  |      sr = VBYI(sr); | ||
|  |      return VFNMS(ti, sr, tr); | ||
|  | } | ||
|  | #else /* !FFTW_SINGLE */
 | ||
|  | #  define VTW1(v,x) {TW_CEXP, v, x}
 | ||
|  | static inline V BYTW1(const R *t, V sr) | ||
|  | { | ||
|  |      V tx = LD(t, 1, t); | ||
|  |      return VZMUL(tx, sr); | ||
|  | } | ||
|  | static inline V BYTWJ1(const R *t, V sr) | ||
|  | { | ||
|  |      V tx = LD(t, 1, t); | ||
|  |      return VZMULJ(tx, sr); | ||
|  | } | ||
|  | #endif
 | ||
|  | #define TWVL1 (VL)
 | ||
|  | 
 | ||
|  | /* twiddle storage #2: twice the space, faster (when in cache) */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTW2(v,x)							\
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\ | ||
|  |   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | ||
|  | #else /* !FFTW_SINGLE */
 | ||
|  | #  define VTW2(v,x)							\
 | ||
|  |   {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x} | ||
|  | #endif
 | ||
|  | #define TWVL2 (2 * VL)
 | ||
|  | static inline V BYTW2(const R *t, V sr) | ||
|  | { | ||
|  |      V si = FLIP_RI(sr); | ||
|  |      V ti = LDA(t+2*VL,0,t); | ||
|  |      V tt = VMUL(ti, si); | ||
|  |      V tr = LDA(t,0,t); | ||
|  |      return VFMA(tr, sr, tt); | ||
|  | } | ||
|  | static inline V BYTWJ2(const R *t, V sr) | ||
|  | { | ||
|  |      V si = FLIP_RI(sr); | ||
|  |      V tr = LDA(t,0,t); | ||
|  |      V tt = VMUL(tr, sr); | ||
|  |      V ti = LDA(t+2*VL,0,t); | ||
|  |      return VFNMS(ti, si, tt); | ||
|  | } | ||
|  | 
 | ||
|  | /* twiddle storage #3 */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | ||
|  | #  define TWVL3 (VL)
 | ||
|  | #else
 | ||
|  | #  define VTW3(v,x) VTW1(v,x)
 | ||
|  | #  define TWVL3 TWVL1
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* twiddle storage for split arrays */ | ||
|  | #ifdef FFTW_SINGLE
 | ||
|  | #  define VTWS(v,x)							  \
 | ||
|  |     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | ||
|  |     {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | ||
|  | #else
 | ||
|  | #  define VTWS(v,x)							  \
 | ||
|  |     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x} | ||
|  | #endif
 | ||
|  | #define TWVLS (2 * VL)
 | ||
|  | 
 | ||
|  | #define VLEAVE() /* nothing */
 | ||
|  | 
 | ||
|  | #include "simd-common.h"
 |