131 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
		
		
			
		
	
	
			131 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
| 
								 | 
							
								(*
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Matteo Frigo
							 | 
						||
| 
								 | 
							
								 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is free software; you can redistribute it and/or modify
							 | 
						||
| 
								 | 
							
								 * it under the terms of the GNU General Public License as published by
							 | 
						||
| 
								 | 
							
								 * the Free Software Foundation; either version 2 of the License, or
							 | 
						||
| 
								 | 
							
								 * (at your option) any later version.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This program is distributed in the hope that it will be useful,
							 | 
						||
| 
								 | 
							
								 * but WITHOUT ANY WARRANTY; without even the implied warranty of
							 | 
						||
| 
								 | 
							
								 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
							 | 
						||
| 
								 | 
							
								 * GNU General Public License for more details.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * You should have received a copy of the GNU General Public License
							 | 
						||
| 
								 | 
							
								 * along with this program; if not, write to the Free Software
							 | 
						||
| 
								 | 
							
								 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								*)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								open Complex
							 | 
						||
| 
								 | 
							
								open Util
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let polyphase m a ph i = a (m * i + ph)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let rec divmod n i =
							 | 
						||
| 
								 | 
							
								  if (i < 0) then 
							 | 
						||
| 
								 | 
							
								    let (a, b) = divmod n (i + n)
							 | 
						||
| 
								 | 
							
								    in (a - 1, b)
							 | 
						||
| 
								 | 
							
								  else (i / n, i mod n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let unpolyphase m a i = let (x, y) = divmod m i in a y x
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								let lift2 f a b i = f (a i) (b i)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								(* convolution of signals A and B *)
							 | 
						||
| 
								 | 
							
								let rec conv na a nb b =
							 | 
						||
| 
								 | 
							
								  let rec naive na a nb b i =
							 | 
						||
| 
								 | 
							
								    sigma 0 na (fun j -> (a j) @* (b (i - j)))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  and recur na a nb b =
							 | 
						||
| 
								 | 
							
								    if (na <= 1 || nb <= 1) then
							 | 
						||
| 
								 | 
							
								      naive na a nb b
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								      let p = polyphase 2 in
							 | 
						||
| 
								 | 
							
								      let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0)
							 | 
						||
| 
								 | 
							
								      and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1)
							 | 
						||
| 
								 | 
							
								      and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0)
							 | 
						||
| 
								 | 
							
								      and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in
							 | 
						||
| 
								 | 
							
								      unpolyphase 2 (function
							 | 
						||
| 
								 | 
							
									  0 -> fun i -> (ee i) @+ (oo (i - 1))
							 | 
						||
| 
								 | 
							
									| 1 -> fun i -> (eo i) @+ (oe i) 
							 | 
						||
| 
								 | 
							
									| _ -> failwith "recur")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *)
							 | 
						||
| 
								 | 
							
								  and karatsuba1 na a nb b =
							 | 
						||
| 
								 | 
							
								      let p = polyphase 2 in
							 | 
						||
| 
								 | 
							
								      let ae = p a 0 and nae = na - na / 2
							 | 
						||
| 
								 | 
							
								      and ao = p a 1 and nao = na / 2
							 | 
						||
| 
								 | 
							
								      and be = p b 0 and nbe = nb - nb / 2
							 | 
						||
| 
								 | 
							
								      and bo = p b 1 and nbo = nb / 2 in
							 | 
						||
| 
								 | 
							
								      let ae = infinite nae ae and ao = infinite nao ao
							 | 
						||
| 
								 | 
							
								      and be = infinite nbe be and bo = infinite nbo bo in
							 | 
						||
| 
								 | 
							
								      let aeo = lift2 (@+) ae ao and naeo = nae
							 | 
						||
| 
								 | 
							
								      and beo = lift2 (@+) be bo and nbeo = nbe in
							 | 
						||
| 
								 | 
							
								      let ee = conv nae ae nbe be 
							 | 
						||
| 
								 | 
							
								      and oo = conv nao ao nbo bo
							 | 
						||
| 
								 | 
							
								      and eoeo = conv naeo aeo nbeo beo in
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      let q = function
							 | 
						||
| 
								 | 
							
									  0 -> fun i -> (ee i)  @+ (oo (i - 1))
							 | 
						||
| 
								 | 
							
									| 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i))
							 | 
						||
| 
								 | 
							
									| _ -> failwith "karatsuba1" in
							 | 
						||
| 
								 | 
							
								      unpolyphase 2 q
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  (* Karatsuba variant 2: 
							 | 
						||
| 
								 | 
							
								     (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *)
							 | 
						||
| 
								 | 
							
								  and karatsuba2 na a nb b =
							 | 
						||
| 
								 | 
							
								      let p = polyphase 2 in
							 | 
						||
| 
								 | 
							
								      let ae = p a 0 and nae = na - na / 2
							 | 
						||
| 
								 | 
							
								      and ao = p a 1 and nao = na / 2
							 | 
						||
| 
								 | 
							
								      and be = p b 0 and nbe = nb - nb / 2
							 | 
						||
| 
								 | 
							
								      and bo = p b 1 and nbo = nb / 2 in
							 | 
						||
| 
								 | 
							
								      let ae = infinite nae ae and ao = infinite nao ao
							 | 
						||
| 
								 | 
							
								      and be = infinite nbe be and bo = infinite nbo bo in
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      let c1 = conv nae (lift2 (@+) ae ao) nbe be
							 | 
						||
| 
								 | 
							
								      and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1))
							 | 
						||
| 
								 | 
							
								      and c3 = conv nae ae nbe (lift2 (@-) be bo) in
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      let q = function
							 | 
						||
| 
								 | 
							
									  0 -> lift2 (@-) c1 c2
							 | 
						||
| 
								 | 
							
									| 1 -> lift2 (@-) c1 c3
							 | 
						||
| 
								 | 
							
									| _ -> failwith "karatsuba2" in
							 | 
						||
| 
								 | 
							
								      unpolyphase 2 q
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  and karatsuba na a nb b =
							 | 
						||
| 
								 | 
							
								    let m = na + nb - 1 in
							 | 
						||
| 
								 | 
							
								    if (m < !Magic.karatsuba_min) then
							 | 
						||
| 
								 | 
							
								      recur na a nb b
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								      match !Magic.karatsuba_variant with
							 | 
						||
| 
								 | 
							
									1 -> karatsuba1 na a nb b
							 | 
						||
| 
								 | 
							
								      |	2 -> karatsuba2 na a nb b
							 | 
						||
| 
								 | 
							
								      |	_ -> failwith "unknown karatsuba variant"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  and via_circular na a nb b =
							 | 
						||
| 
								 | 
							
								    let m = na + nb - 1 in
							 | 
						||
| 
								 | 
							
								    if (m < !Magic.circular_min) then
							 | 
						||
| 
								 | 
							
								      karatsuba na a nb b
							 | 
						||
| 
								 | 
							
								    else
							 | 
						||
| 
								 | 
							
								      let rec find_min n = if n >= m then n else find_min (2 * n) in
							 | 
						||
| 
								 | 
							
								      circular (find_min 1) a b
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  in
							 | 
						||
| 
								 | 
							
								  let a = infinite na a and b = infinite nb b in
							 | 
						||
| 
								 | 
							
								  let res = array (na + nb - 1) (via_circular na a nb b) in
							 | 
						||
| 
								 | 
							
								  infinite (na + nb - 1) res
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								and circular n a b =
							 | 
						||
| 
								 | 
							
								  let via_dft n a b =
							 | 
						||
| 
								 | 
							
								    let fa = Fft.dft (-1) n a 
							 | 
						||
| 
								 | 
							
								    and fb = Fft.dft (-1) n b
							 | 
						||
| 
								 | 
							
								    and scale = inverse_int n in
							 | 
						||
| 
								 | 
							
								    let fab i = ((fa i) @* (fb i)) @* scale in
							 | 
						||
| 
								 | 
							
								    Fft.dft 1 n fab
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  in via_dft n a b
							 |