177 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			177 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | /* This file was automatically generated --- DO NOT EDIT */ | ||
|  | /* Generated on Tue Sep 14 10:45:28 EDT 2021 */ | ||
|  | 
 | ||
|  | #include "dft/codelet-dft.h"
 | ||
|  | 
 | ||
|  | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1fv_5 -include dft/simd/t1f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 20 FP additions, 19 FP multiplications, | ||
|  |  * (or, 11 additions, 10 multiplications, 9 fused multiply/add), | ||
|  |  * 20 stack variables, 4 constants, and 10 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t1f.h"
 | ||
|  | 
 | ||
|  | static void t1fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) { | ||
|  | 	       V T1, Tg, Th, T6, Tb, Tc; | ||
|  | 	       T1 = LD(&(x[0]), ms, &(x[0])); | ||
|  | 	       { | ||
|  | 		    V T3, Ta, T5, T8; | ||
|  | 		    { | ||
|  | 			 V T2, T9, T4, T7; | ||
|  | 			 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T3 = BYTWJ(&(W[0]), T2); | ||
|  | 			 T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 Ta = BYTWJ(&(W[TWVL * 4]), T9); | ||
|  | 			 T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 			 T5 = BYTWJ(&(W[TWVL * 6]), T4); | ||
|  | 			 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			 T8 = BYTWJ(&(W[TWVL * 2]), T7); | ||
|  | 		    } | ||
|  | 		    Tg = VSUB(T3, T5); | ||
|  | 		    Th = VSUB(T8, Ta); | ||
|  | 		    T6 = VADD(T3, T5); | ||
|  | 		    Tb = VADD(T8, Ta); | ||
|  | 		    Tc = VADD(T6, Tb); | ||
|  | 	       } | ||
|  | 	       ST(&(x[0]), VADD(T1, Tc), ms, &(x[0])); | ||
|  | 	       { | ||
|  | 		    V Ti, Tk, Tf, Tj, Td, Te; | ||
|  | 		    Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg)); | ||
|  | 		    Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th)); | ||
|  | 		    Td = VFNMS(LDK(KP250000000), Tc, T1); | ||
|  | 		    Te = VSUB(T6, Tb); | ||
|  | 		    Tf = VFMA(LDK(KP559016994), Te, Td); | ||
|  | 		    Tj = VFNMS(LDK(KP559016994), Te, Td); | ||
|  | 		    ST(&(x[WS(rs, 1)]), VFNMSI(Ti, Tf), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 3)]), VFNMSI(Tk, Tj), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 4)]), VFMAI(Ti, Tf), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 2)]), VFMAI(Tk, Tj), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 5, XSIMD_STRING("t1fv_5"), twinstr, &GENUS, { 11, 10, 9, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t1fv_5) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1fv_5, &desc); | ||
|  | } | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t1fv_5 -include dft/simd/t1f.h */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * This function contains 20 FP additions, 14 FP multiplications, | ||
|  |  * (or, 17 additions, 11 multiplications, 3 fused multiply/add), | ||
|  |  * 20 stack variables, 4 constants, and 10 memory accesses | ||
|  |  */ | ||
|  | #include "dft/simd/t1f.h"
 | ||
|  | 
 | ||
|  | static void t1fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | ||
|  | { | ||
|  |      DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | ||
|  |      DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | ||
|  |      DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | ||
|  |      DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | ||
|  |      { | ||
|  | 	  INT m; | ||
|  | 	  R *x; | ||
|  | 	  x = ri; | ||
|  | 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) { | ||
|  | 	       V Tc, Tg, Th, T5, Ta, Td; | ||
|  | 	       Tc = LD(&(x[0]), ms, &(x[0])); | ||
|  | 	       { | ||
|  | 		    V T2, T9, T4, T7; | ||
|  | 		    { | ||
|  | 			 V T1, T8, T3, T6; | ||
|  | 			 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T2 = BYTWJ(&(W[0]), T1); | ||
|  | 			 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | ||
|  | 			 T9 = BYTWJ(&(W[TWVL * 4]), T8); | ||
|  | 			 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | ||
|  | 			 T4 = BYTWJ(&(W[TWVL * 6]), T3); | ||
|  | 			 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | ||
|  | 			 T7 = BYTWJ(&(W[TWVL * 2]), T6); | ||
|  | 		    } | ||
|  | 		    Tg = VSUB(T2, T4); | ||
|  | 		    Th = VSUB(T7, T9); | ||
|  | 		    T5 = VADD(T2, T4); | ||
|  | 		    Ta = VADD(T7, T9); | ||
|  | 		    Td = VADD(T5, Ta); | ||
|  | 	       } | ||
|  | 	       ST(&(x[0]), VADD(Tc, Td), ms, &(x[0])); | ||
|  | 	       { | ||
|  | 		    V Ti, Tj, Tf, Tk, Tb, Te; | ||
|  | 		    Ti = VBYI(VFMA(LDK(KP951056516), Tg, VMUL(LDK(KP587785252), Th))); | ||
|  | 		    Tj = VBYI(VFNMS(LDK(KP587785252), Tg, VMUL(LDK(KP951056516), Th))); | ||
|  | 		    Tb = VMUL(LDK(KP559016994), VSUB(T5, Ta)); | ||
|  | 		    Te = VFNMS(LDK(KP250000000), Td, Tc); | ||
|  | 		    Tf = VADD(Tb, Te); | ||
|  | 		    Tk = VSUB(Te, Tb); | ||
|  | 		    ST(&(x[WS(rs, 1)]), VSUB(Tf, Ti), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)])); | ||
|  | 		    ST(&(x[WS(rs, 4)]), VADD(Ti, Tf), ms, &(x[0])); | ||
|  | 		    ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0])); | ||
|  | 	       } | ||
|  | 	  } | ||
|  |      } | ||
|  |      VLEAVE(); | ||
|  | } | ||
|  | 
 | ||
|  | static const tw_instr twinstr[] = { | ||
|  |      VTW(0, 1), | ||
|  |      VTW(0, 2), | ||
|  |      VTW(0, 3), | ||
|  |      VTW(0, 4), | ||
|  |      { TW_NEXT, VL, 0 } | ||
|  | }; | ||
|  | 
 | ||
|  | static const ct_desc desc = { 5, XSIMD_STRING("t1fv_5"), twinstr, &GENUS, { 17, 11, 3, 0 }, 0, 0, 0 }; | ||
|  | 
 | ||
|  | void XSIMD(codelet_t1fv_5) (planner *p) { | ||
|  |      X(kdft_dit_register) (p, t1fv_5, &desc); | ||
|  | } | ||
|  | #endif
 |